Formalized Mathematics最新文献

筛选
英文 中文
Finite Dimensional Real Normed Spaces are Proper Metric Spaces 有限维实赋范空间是固有度量空间
IF 0.3
Formalized Mathematics Pub Date : 2021-12-01 DOI: 10.2478/forma-2021-0017
Kazuhisa Nakasho, Hiroyuki Okazaki, Y. Shidama
{"title":"Finite Dimensional Real Normed Spaces are Proper Metric Spaces","authors":"Kazuhisa Nakasho, Hiroyuki Okazaki, Y. Shidama","doi":"10.2478/forma-2021-0017","DOIUrl":"https://doi.org/10.2478/forma-2021-0017","url":null,"abstract":"Summary In this article, we formalize in Mizar [1], [2] the topological properties of finite-dimensional real normed spaces. In the first section, we formalize the Bolzano-Weierstrass theorem, which states that a bounded sequence of points in an n-dimensional Euclidean space has a certain subsequence that converges to a point. As a corollary, it is also shown the equivalence between a subset of an n-dimensional Euclidean space being compact and being closed and bounded. In the next section, we formalize the definitions of L1-norm (Manhattan Norm) and maximum norm and show their topological equivalence in n-dimensional Euclidean spaces and finite-dimensional real linear spaces. In the last section, we formalize the linear isometries and their topological properties. Namely, it is shown that a linear isometry between real normed spaces preserves properties such as continuity, the convergence of a sequence, openness, closeness, and compactness of subsets. Finally, it is shown that finite-dimensional real normed spaces are proper metric spaces. We referred to [5], [9], and [7] in the formalization.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76574259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
About Graph Sums 关于图和
IF 0.3
Formalized Mathematics Pub Date : 2021-12-01 DOI: 10.2478/forma-2021-0023
Sebastian Koch
{"title":"About Graph Sums","authors":"Sebastian Koch","doi":"10.2478/forma-2021-0023","DOIUrl":"https://doi.org/10.2478/forma-2021-0023","url":null,"abstract":"Summary In this article the sum (or disjoint union) of graphs is formalized in the Mizar system [4], [1], based on the formalization of graphs in [9].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74063991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Relationship between the Riemann and Lebesgue Integrals 黎曼积分与勒贝格积分的关系
IF 0.3
Formalized Mathematics Pub Date : 2021-12-01 DOI: 10.2478/forma-2021-0018
N. Endou
{"title":"Relationship between the Riemann and Lebesgue Integrals","authors":"N. Endou","doi":"10.2478/forma-2021-0018","DOIUrl":"https://doi.org/10.2478/forma-2021-0018","url":null,"abstract":"Summary The goal of this article is to clarify the relationship between Riemann and Lebesgue integrals. In previous article [5], we constructed a one-dimensional Lebesgue measure. The one-dimensional Lebesgue measure provides a measure of any intervals, which can be used to prove the well-known relationship [6] between the Riemann and Lebesgue integrals [1]. We also proved the relationship between the integral of a given measure and that of its complete measure. As the result of this work, the Lebesgue integral of a bounded real valued function in the Mizar system [2], [3] can be calculated by the Riemann integral.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87691667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The 3-Fold Product Space of Real Normed Spaces and its Properties 实赋范空间的三重积空间及其性质
IF 0.3
Formalized Mathematics Pub Date : 2021-12-01 DOI: 10.2478/forma-2021-0022
Hiroyuki Okazaki, Kazuhisa Nakasho
{"title":"The 3-Fold Product Space of Real Normed Spaces and its Properties","authors":"Hiroyuki Okazaki, Kazuhisa Nakasho","doi":"10.2478/forma-2021-0022","DOIUrl":"https://doi.org/10.2478/forma-2021-0022","url":null,"abstract":"Summary In this article, we formalize in Mizar [1], [2] the 3-fold product space of real normed spaces for usefulness in application fields such as engineering, although the formalization of the 2-fold product space of real normed spaces has been stored in the Mizar Mathematical Library [3]. First, we prove some theorems about the 3-variable function and 3-fold Cartesian product for preparation. Then we formalize the definition of 3-fold product space of real linear spaces. Finally, we formulate the definition of 3-fold product space of real normed spaces. We referred to [7] and [6] in the formalization.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84917683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algorithm NextFit for the Bin Packing Problem 装箱问题的NextFit算法
IF 0.3
Formalized Mathematics Pub Date : 2021-09-01 DOI: 10.2478/forma-2021-0014
H. Fujiwara, Ryota Adachi, Hiroaki Yamamoto
{"title":"Algorithm NextFit for the Bin Packing Problem","authors":"H. Fujiwara, Ryota Adachi, Hiroaki Yamamoto","doi":"10.2478/forma-2021-0014","DOIUrl":"https://doi.org/10.2478/forma-2021-0014","url":null,"abstract":"Summary. The bin packing problem is a fundamental and important optimization problem in theoretical computer science [4], [6]. An instance is a sequence of items, each being of positive size at most one. The task is to place all the items into bins so that the total size of items in each bin is at most one and the number of bins that contain at least one item is minimum. Approximation algorithms have been intensively studied. Algorithm NextFit would be the simplest one. The algorithm repeatedly does the following: If the first unprocessed item in the sequence can be placed, in terms of size, additionally to the bin into which the algorithm has placed an item the last time, place the item into that bin; otherwise place the item into an empty bin. Johnson [5] proved that the number of the resulting bins by algorithm NextFit is less than twice the number of the fewest bins that are needed to contain all items. In this article, we formalize in Mizar [1], [2] the bin packing problem as follows: An instance is a sequence of positive real numbers that are each at most one. The task is to find a function that maps the indices of the sequence to positive integers such that the sum of the subsequence for each of the inverse images is at most one and the size of the image is minimum. We then formalize algorithm NextFit, its feasibility, its approximation guarantee, and the tightness of the approximation guarantee.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85767042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Splitting Fields 将字段
IF 0.3
Formalized Mathematics Pub Date : 2021-09-01 DOI: 10.2478/forma-2021-0013
Christoph Schwarzweller
{"title":"Splitting Fields","authors":"Christoph Schwarzweller","doi":"10.2478/forma-2021-0013","DOIUrl":"https://doi.org/10.2478/forma-2021-0013","url":null,"abstract":"Summary. In this article we further develop field theory in Mizar [1], [2]: we prove existence and uniqueness of splitting fields. We define the splitting field of a polynomial p ∈ F [X] as the smallest field extension of F, in which p splits into linear factors. From this follows, that for a splitting field E of p we have E = F (A) where A is the set of p’s roots. Splitting fields are unique, however, only up to isomorphisms; to be more precise up to F -isomorphims i.e. isomorphisms i with i|F = IdF. We prove that two splitting fields of p ∈ F [X] are F -isomorphic using the well-known technique [4], [3] of extending isomorphisms from F1 → F2 to F1(a) → F2(b) for a and b being algebraic over F1 and F2, respectively.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80583744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Real Vector Space and Related Notions 实向量空间及相关概念
IF 0.3
Formalized Mathematics Pub Date : 2021-09-01 DOI: 10.2478/forma-2021-0012
Kazuhisa Nakasho, Hiroyuki Okazaki, Y. Shidama
{"title":"Real Vector Space and Related Notions","authors":"Kazuhisa Nakasho, Hiroyuki Okazaki, Y. Shidama","doi":"10.2478/forma-2021-0012","DOIUrl":"https://doi.org/10.2478/forma-2021-0012","url":null,"abstract":"Summary. In this paper, we discuss the properties that hold in finite dimensional vector spaces and related spaces. In the Mizar language [1], [2], variables are strictly typed, and their type conversion requires a complicated process. Our purpose is to formalize that some properties of finite dimensional vector spaces are preserved in type transformations, and to contain the complexity of type transformations into this paper. Specifically, we show that properties such as algebraic structure, subsets, finite sequences and their sums, linear combination, linear independence, and affine independence are preserved in type conversions among TOP-REAL(n), REAL-NS(n), and n-VectSp over F Real. We referred to [4], [9], and [8] in the formalization.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87893352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On Primary Ideals. Part I 论基本理想。第一部分
IF 0.3
Formalized Mathematics Pub Date : 2021-07-01 DOI: 10.2478/forma-2021-0010
Yasushige Watase
{"title":"On Primary Ideals. Part I","authors":"Yasushige Watase","doi":"10.2478/forma-2021-0010","DOIUrl":"https://doi.org/10.2478/forma-2021-0010","url":null,"abstract":"Summary. We formalize in the Mizar System [3], [4], definitions and basic propositions about primary ideals of a commutative ring along with Chapter 4 of [1] and Chapter III of [8]. Additionally other necessary basic ideal operations such as compatibilities taking radical and intersection of finite number of ideals are formalized as well in order to prove theorems relating primary ideals. These basic operations are mainly quoted from Chapter 1 of [1] and compiled as preliminaries in the first half of the article.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90242756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ascoli-Arzelà Theorem 定理Ascoli-Arzelà
IF 0.3
Formalized Mathematics Pub Date : 2021-07-01 DOI: 10.2478/forma-2021-0009
Hiroshi Yamazaki, K. Miyajima, Y. Shidama
{"title":"Ascoli-Arzelà Theorem","authors":"Hiroshi Yamazaki, K. Miyajima, Y. Shidama","doi":"10.2478/forma-2021-0009","DOIUrl":"https://doi.org/10.2478/forma-2021-0009","url":null,"abstract":"Summary. In this article we formalize the Ascoli-Arzelà theorem [5], [6], [8] in Mizar [1], [2]. First, we gave definitions of equicontinuousness and equiboundedness of a set of continuous functions [12], [7], [3], [9]. Next, we formalized the Ascoli-Arzelà theorem using those definitions, and proved this theorem.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91122836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Pappus’s Hexagon Theorem in Real Projective Plane 实投影平面上的Pappus六边形定理
IF 0.3
Formalized Mathematics Pub Date : 2021-07-01 DOI: 10.2478/forma-2021-0007
Roland Coghetto
{"title":"Pappus’s Hexagon Theorem in Real Projective Plane","authors":"Roland Coghetto","doi":"10.2478/forma-2021-0007","DOIUrl":"https://doi.org/10.2478/forma-2021-0007","url":null,"abstract":"Summary. In this article we prove, using Mizar [2], [1], the Pappus’s hexagon theorem in the real projective plane: “Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear” https://en.wikipedia.org/wiki/Pappus’s_hexagon_theorem. More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10] (where TOP-REAL3 is a metric space defined in [5]) satisfies the Pappus’s axiom defined in [11] by Wojciech Leończuk and Krzysztof Prażmowski. Eugeniusz Kusak and Wojciech Leończuk formalized the Hessenberg theorem early in the MML [9]. With this result, the real projective plane is Desarguesian. For proving the Pappus’s theorem, two different proofs are given. First, we use the techniques developed in the section “Projective Proofs of Pappus’s Theorem” in the chapter “Pappos’s Theorem: Nine proofs and three variations” [12]. Secondly, Pascal’s theorem [4] is used. In both cases, to prove some lemmas, we use Prover9 https://www.cs.unm.edu/~mccune/prover9/, the successor of the Otter prover and ott2miz by Josef Urban See its homepage https://github.com/JUrban/ott2miz [13], [8], [7]. In Coq, the Pappus’s theorem is proved as the application of Grassmann-Cayley algebra [6] and more recently in Tarski’s geometry [3].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86445657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信