{"title":"Finite Dimensional Real Normed Spaces are Proper Metric Spaces","authors":"Kazuhisa Nakasho, Hiroyuki Okazaki, Y. Shidama","doi":"10.2478/forma-2021-0017","DOIUrl":"https://doi.org/10.2478/forma-2021-0017","url":null,"abstract":"Summary In this article, we formalize in Mizar [1], [2] the topological properties of finite-dimensional real normed spaces. In the first section, we formalize the Bolzano-Weierstrass theorem, which states that a bounded sequence of points in an n-dimensional Euclidean space has a certain subsequence that converges to a point. As a corollary, it is also shown the equivalence between a subset of an n-dimensional Euclidean space being compact and being closed and bounded. In the next section, we formalize the definitions of L1-norm (Manhattan Norm) and maximum norm and show their topological equivalence in n-dimensional Euclidean spaces and finite-dimensional real linear spaces. In the last section, we formalize the linear isometries and their topological properties. Namely, it is shown that a linear isometry between real normed spaces preserves properties such as continuity, the convergence of a sequence, openness, closeness, and compactness of subsets. Finally, it is shown that finite-dimensional real normed spaces are proper metric spaces. We referred to [5], [9], and [7] in the formalization.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76574259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"About Graph Sums","authors":"Sebastian Koch","doi":"10.2478/forma-2021-0023","DOIUrl":"https://doi.org/10.2478/forma-2021-0023","url":null,"abstract":"Summary In this article the sum (or disjoint union) of graphs is formalized in the Mizar system [4], [1], based on the formalization of graphs in [9].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74063991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relationship between the Riemann and Lebesgue Integrals","authors":"N. Endou","doi":"10.2478/forma-2021-0018","DOIUrl":"https://doi.org/10.2478/forma-2021-0018","url":null,"abstract":"Summary The goal of this article is to clarify the relationship between Riemann and Lebesgue integrals. In previous article [5], we constructed a one-dimensional Lebesgue measure. The one-dimensional Lebesgue measure provides a measure of any intervals, which can be used to prove the well-known relationship [6] between the Riemann and Lebesgue integrals [1]. We also proved the relationship between the integral of a given measure and that of its complete measure. As the result of this work, the Lebesgue integral of a bounded real valued function in the Mizar system [2], [3] can be calculated by the Riemann integral.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87691667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The 3-Fold Product Space of Real Normed Spaces and its Properties","authors":"Hiroyuki Okazaki, Kazuhisa Nakasho","doi":"10.2478/forma-2021-0022","DOIUrl":"https://doi.org/10.2478/forma-2021-0022","url":null,"abstract":"Summary In this article, we formalize in Mizar [1], [2] the 3-fold product space of real normed spaces for usefulness in application fields such as engineering, although the formalization of the 2-fold product space of real normed spaces has been stored in the Mizar Mathematical Library [3]. First, we prove some theorems about the 3-variable function and 3-fold Cartesian product for preparation. Then we formalize the definition of 3-fold product space of real linear spaces. Finally, we formulate the definition of 3-fold product space of real normed spaces. We referred to [7] and [6] in the formalization.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84917683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Algorithm NextFit for the Bin Packing Problem","authors":"H. Fujiwara, Ryota Adachi, Hiroaki Yamamoto","doi":"10.2478/forma-2021-0014","DOIUrl":"https://doi.org/10.2478/forma-2021-0014","url":null,"abstract":"Summary. The bin packing problem is a fundamental and important optimization problem in theoretical computer science [4], [6]. An instance is a sequence of items, each being of positive size at most one. The task is to place all the items into bins so that the total size of items in each bin is at most one and the number of bins that contain at least one item is minimum. Approximation algorithms have been intensively studied. Algorithm NextFit would be the simplest one. The algorithm repeatedly does the following: If the first unprocessed item in the sequence can be placed, in terms of size, additionally to the bin into which the algorithm has placed an item the last time, place the item into that bin; otherwise place the item into an empty bin. Johnson [5] proved that the number of the resulting bins by algorithm NextFit is less than twice the number of the fewest bins that are needed to contain all items. In this article, we formalize in Mizar [1], [2] the bin packing problem as follows: An instance is a sequence of positive real numbers that are each at most one. The task is to find a function that maps the indices of the sequence to positive integers such that the sum of the subsequence for each of the inverse images is at most one and the size of the image is minimum. We then formalize algorithm NextFit, its feasibility, its approximation guarantee, and the tightness of the approximation guarantee.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85767042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Splitting Fields","authors":"Christoph Schwarzweller","doi":"10.2478/forma-2021-0013","DOIUrl":"https://doi.org/10.2478/forma-2021-0013","url":null,"abstract":"Summary. In this article we further develop field theory in Mizar [1], [2]: we prove existence and uniqueness of splitting fields. We define the splitting field of a polynomial p ∈ F [X] as the smallest field extension of F, in which p splits into linear factors. From this follows, that for a splitting field E of p we have E = F (A) where A is the set of p’s roots. Splitting fields are unique, however, only up to isomorphisms; to be more precise up to F -isomorphims i.e. isomorphisms i with i|F = IdF. We prove that two splitting fields of p ∈ F [X] are F -isomorphic using the well-known technique [4], [3] of extending isomorphisms from F1 → F2 to F1(a) → F2(b) for a and b being algebraic over F1 and F2, respectively.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80583744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real Vector Space and Related Notions","authors":"Kazuhisa Nakasho, Hiroyuki Okazaki, Y. Shidama","doi":"10.2478/forma-2021-0012","DOIUrl":"https://doi.org/10.2478/forma-2021-0012","url":null,"abstract":"Summary. In this paper, we discuss the properties that hold in finite dimensional vector spaces and related spaces. In the Mizar language [1], [2], variables are strictly typed, and their type conversion requires a complicated process. Our purpose is to formalize that some properties of finite dimensional vector spaces are preserved in type transformations, and to contain the complexity of type transformations into this paper. Specifically, we show that properties such as algebraic structure, subsets, finite sequences and their sums, linear combination, linear independence, and affine independence are preserved in type conversions among TOP-REAL(n), REAL-NS(n), and n-VectSp over F Real. We referred to [4], [9], and [8] in the formalization.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87893352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Primary Ideals. Part I","authors":"Yasushige Watase","doi":"10.2478/forma-2021-0010","DOIUrl":"https://doi.org/10.2478/forma-2021-0010","url":null,"abstract":"Summary. We formalize in the Mizar System [3], [4], definitions and basic propositions about primary ideals of a commutative ring along with Chapter 4 of [1] and Chapter III of [8]. Additionally other necessary basic ideal operations such as compatibilities taking radical and intersection of finite number of ideals are formalized as well in order to prove theorems relating primary ideals. These basic operations are mainly quoted from Chapter 1 of [1] and compiled as preliminaries in the first half of the article.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90242756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ascoli-Arzelà Theorem","authors":"Hiroshi Yamazaki, K. Miyajima, Y. Shidama","doi":"10.2478/forma-2021-0009","DOIUrl":"https://doi.org/10.2478/forma-2021-0009","url":null,"abstract":"Summary. In this article we formalize the Ascoli-Arzelà theorem [5], [6], [8] in Mizar [1], [2]. First, we gave definitions of equicontinuousness and equiboundedness of a set of continuous functions [12], [7], [3], [9]. Next, we formalized the Ascoli-Arzelà theorem using those definitions, and proved this theorem.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91122836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pappus’s Hexagon Theorem in Real Projective Plane","authors":"Roland Coghetto","doi":"10.2478/forma-2021-0007","DOIUrl":"https://doi.org/10.2478/forma-2021-0007","url":null,"abstract":"Summary. In this article we prove, using Mizar [2], [1], the Pappus’s hexagon theorem in the real projective plane: “Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear” https://en.wikipedia.org/wiki/Pappus’s_hexagon_theorem. More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10] (where TOP-REAL3 is a metric space defined in [5]) satisfies the Pappus’s axiom defined in [11] by Wojciech Leończuk and Krzysztof Prażmowski. Eugeniusz Kusak and Wojciech Leończuk formalized the Hessenberg theorem early in the MML [9]. With this result, the real projective plane is Desarguesian. For proving the Pappus’s theorem, two different proofs are given. First, we use the techniques developed in the section “Projective Proofs of Pappus’s Theorem” in the chapter “Pappos’s Theorem: Nine proofs and three variations” [12]. Secondly, Pascal’s theorem [4] is used. In both cases, to prove some lemmas, we use Prover9 https://www.cs.unm.edu/~mccune/prover9/, the successor of the Otter prover and ott2miz by Josef Urban See its homepage https://github.com/JUrban/ott2miz [13], [8], [7]. In Coq, the Pappus’s theorem is proved as the application of Grassmann-Cayley algebra [6] and more recently in Tarski’s geometry [3].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86445657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}