实赋范空间的三重积空间及其性质

IF 1 Q1 MATHEMATICS
Hiroyuki Okazaki, Kazuhisa Nakasho
{"title":"实赋范空间的三重积空间及其性质","authors":"Hiroyuki Okazaki, Kazuhisa Nakasho","doi":"10.2478/forma-2021-0022","DOIUrl":null,"url":null,"abstract":"Summary In this article, we formalize in Mizar [1], [2] the 3-fold product space of real normed spaces for usefulness in application fields such as engineering, although the formalization of the 2-fold product space of real normed spaces has been stored in the Mizar Mathematical Library [3]. First, we prove some theorems about the 3-variable function and 3-fold Cartesian product for preparation. Then we formalize the definition of 3-fold product space of real linear spaces. Finally, we formulate the definition of 3-fold product space of real normed spaces. We referred to [7] and [6] in the formalization.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 3-Fold Product Space of Real Normed Spaces and its Properties\",\"authors\":\"Hiroyuki Okazaki, Kazuhisa Nakasho\",\"doi\":\"10.2478/forma-2021-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this article, we formalize in Mizar [1], [2] the 3-fold product space of real normed spaces for usefulness in application fields such as engineering, although the formalization of the 2-fold product space of real normed spaces has been stored in the Mizar Mathematical Library [3]. First, we prove some theorems about the 3-variable function and 3-fold Cartesian product for preparation. Then we formalize the definition of 3-fold product space of real linear spaces. Finally, we formulate the definition of 3-fold product space of real normed spaces. We referred to [7] and [6] in the formalization.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2021-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在Mizar[1],[2]中形式化了实赋范空间的3重积空间,以便在工程等应用领域中使用,尽管实赋范空间的2重积空间的形式化已经存储在Mizar数学库[3]中。首先,我们证明了关于三变量函数和三重笛卡尔积的一些定理。然后形式化了实线性空间的3重积空间的定义。最后,给出了实赋范空间的3重积空间的定义。我们在形式化中提到了[7]和[6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The 3-Fold Product Space of Real Normed Spaces and its Properties
Summary In this article, we formalize in Mizar [1], [2] the 3-fold product space of real normed spaces for usefulness in application fields such as engineering, although the formalization of the 2-fold product space of real normed spaces has been stored in the Mizar Mathematical Library [3]. First, we prove some theorems about the 3-variable function and 3-fold Cartesian product for preparation. Then we formalize the definition of 3-fold product space of real linear spaces. Finally, we formulate the definition of 3-fold product space of real normed spaces. We referred to [7] and [6] in the formalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信