将字段

IF 1 Q1 MATHEMATICS
Christoph Schwarzweller
{"title":"将字段","authors":"Christoph Schwarzweller","doi":"10.2478/forma-2021-0013","DOIUrl":null,"url":null,"abstract":"Summary. In this article we further develop field theory in Mizar [1], [2]: we prove existence and uniqueness of splitting fields. We define the splitting field of a polynomial p ∈ F [X] as the smallest field extension of F, in which p splits into linear factors. From this follows, that for a splitting field E of p we have E = F (A) where A is the set of p’s roots. Splitting fields are unique, however, only up to isomorphisms; to be more precise up to F -isomorphims i.e. isomorphisms i with i|F = IdF. We prove that two splitting fields of p ∈ F [X] are F -isomorphic using the well-known technique [4], [3] of extending isomorphisms from F1 → F2 to F1(a) → F2(b) for a and b being algebraic over F1 and F2, respectively.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Splitting Fields\",\"authors\":\"Christoph Schwarzweller\",\"doi\":\"10.2478/forma-2021-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary. In this article we further develop field theory in Mizar [1], [2]: we prove existence and uniqueness of splitting fields. We define the splitting field of a polynomial p ∈ F [X] as the smallest field extension of F, in which p splits into linear factors. From this follows, that for a splitting field E of p we have E = F (A) where A is the set of p’s roots. Splitting fields are unique, however, only up to isomorphisms; to be more precise up to F -isomorphims i.e. isomorphisms i with i|F = IdF. We prove that two splitting fields of p ∈ F [X] are F -isomorphic using the well-known technique [4], [3] of extending isomorphisms from F1 → F2 to F1(a) → F2(b) for a and b being algebraic over F1 and F2, respectively.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2021-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

总结。本文进一步发展了Mizar[1],[2]的场论,证明了分裂场的存在唯一性。我们定义多项式p∈F [X]的分裂域为F的最小域扩展,其中p分裂为线性因子。由此可知,对于分裂域E (p)我们有E = F (a)其中a是p的根的集合。然而,分裂场只有在同构的情况下才是唯一的;更精确地说,直到F -同构,即i与i|F = IdF的同构。我们证明了p∈F [X]的两个分裂域是F -同构的,使用了众所周知的技术[4],[3]将同构从F1→F2扩展到F1(a)→F2(b),当a和b分别是F1和F2上的代数时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitting Fields
Summary. In this article we further develop field theory in Mizar [1], [2]: we prove existence and uniqueness of splitting fields. We define the splitting field of a polynomial p ∈ F [X] as the smallest field extension of F, in which p splits into linear factors. From this follows, that for a splitting field E of p we have E = F (A) where A is the set of p’s roots. Splitting fields are unique, however, only up to isomorphisms; to be more precise up to F -isomorphims i.e. isomorphisms i with i|F = IdF. We prove that two splitting fields of p ∈ F [X] are F -isomorphic using the well-known technique [4], [3] of extending isomorphisms from F1 → F2 to F1(a) → F2(b) for a and b being algebraic over F1 and F2, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信