Algorithm NextFit for the Bin Packing Problem

IF 1 Q1 MATHEMATICS
H. Fujiwara, Ryota Adachi, Hiroaki Yamamoto
{"title":"Algorithm NextFit for the Bin Packing Problem","authors":"H. Fujiwara, Ryota Adachi, Hiroaki Yamamoto","doi":"10.2478/forma-2021-0014","DOIUrl":null,"url":null,"abstract":"Summary. The bin packing problem is a fundamental and important optimization problem in theoretical computer science [4], [6]. An instance is a sequence of items, each being of positive size at most one. The task is to place all the items into bins so that the total size of items in each bin is at most one and the number of bins that contain at least one item is minimum. Approximation algorithms have been intensively studied. Algorithm NextFit would be the simplest one. The algorithm repeatedly does the following: If the first unprocessed item in the sequence can be placed, in terms of size, additionally to the bin into which the algorithm has placed an item the last time, place the item into that bin; otherwise place the item into an empty bin. Johnson [5] proved that the number of the resulting bins by algorithm NextFit is less than twice the number of the fewest bins that are needed to contain all items. In this article, we formalize in Mizar [1], [2] the bin packing problem as follows: An instance is a sequence of positive real numbers that are each at most one. The task is to find a function that maps the indices of the sequence to positive integers such that the sum of the subsequence for each of the inverse images is at most one and the size of the image is minimum. We then formalize algorithm NextFit, its feasibility, its approximation guarantee, and the tightness of the approximation guarantee.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Summary. The bin packing problem is a fundamental and important optimization problem in theoretical computer science [4], [6]. An instance is a sequence of items, each being of positive size at most one. The task is to place all the items into bins so that the total size of items in each bin is at most one and the number of bins that contain at least one item is minimum. Approximation algorithms have been intensively studied. Algorithm NextFit would be the simplest one. The algorithm repeatedly does the following: If the first unprocessed item in the sequence can be placed, in terms of size, additionally to the bin into which the algorithm has placed an item the last time, place the item into that bin; otherwise place the item into an empty bin. Johnson [5] proved that the number of the resulting bins by algorithm NextFit is less than twice the number of the fewest bins that are needed to contain all items. In this article, we formalize in Mizar [1], [2] the bin packing problem as follows: An instance is a sequence of positive real numbers that are each at most one. The task is to find a function that maps the indices of the sequence to positive integers such that the sum of the subsequence for each of the inverse images is at most one and the size of the image is minimum. We then formalize algorithm NextFit, its feasibility, its approximation guarantee, and the tightness of the approximation guarantee.
装箱问题的NextFit算法
总结。装箱问题是理论计算机科学中一个基本而重要的优化问题[4],[6]。实例是一个项目序列,每个项目最多有一个正大小。任务是将所有物品放入箱子中,使每个箱子中物品的总大小最多为一个,并且至少包含一个物品的箱子的数量最少。近似算法已被深入研究。NextFit算法是最简单的一个。该算法重复执行以下操作:如果该序列中第一个未处理的项(按大小)可以放置在该算法上次放置该项的箱子之外,则将该项放置在该箱子中;否则,将物品放入空箱子中。Johnson[5]证明了NextFit算法得到的箱数小于包含所有物品所需的最小箱数的两倍。在本文中,我们将Mizar[1],[2]中的装箱问题形式化如下:实例是一个最多为1的正实数序列。任务是找到一个函数,将序列的索引映射为正整数,使得每个逆图像的子序列的和最多为1,图像的大小最小。然后,我们形式化了算法NextFit,它的可行性,它的近似保证,以及近似保证的紧密性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信