{"title":"实向量空间及相关概念","authors":"Kazuhisa Nakasho, Hiroyuki Okazaki, Y. Shidama","doi":"10.2478/forma-2021-0012","DOIUrl":null,"url":null,"abstract":"Summary. In this paper, we discuss the properties that hold in finite dimensional vector spaces and related spaces. In the Mizar language [1], [2], variables are strictly typed, and their type conversion requires a complicated process. Our purpose is to formalize that some properties of finite dimensional vector spaces are preserved in type transformations, and to contain the complexity of type transformations into this paper. Specifically, we show that properties such as algebraic structure, subsets, finite sequences and their sums, linear combination, linear independence, and affine independence are preserved in type conversions among TOP-REAL(n), REAL-NS(n), and n-VectSp over F Real. We referred to [4], [9], and [8] in the formalization.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real Vector Space and Related Notions\",\"authors\":\"Kazuhisa Nakasho, Hiroyuki Okazaki, Y. Shidama\",\"doi\":\"10.2478/forma-2021-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary. In this paper, we discuss the properties that hold in finite dimensional vector spaces and related spaces. In the Mizar language [1], [2], variables are strictly typed, and their type conversion requires a complicated process. Our purpose is to formalize that some properties of finite dimensional vector spaces are preserved in type transformations, and to contain the complexity of type transformations into this paper. Specifically, we show that properties such as algebraic structure, subsets, finite sequences and their sums, linear combination, linear independence, and affine independence are preserved in type conversions among TOP-REAL(n), REAL-NS(n), and n-VectSp over F Real. We referred to [4], [9], and [8] in the formalization.\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2021-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Summary. In this paper, we discuss the properties that hold in finite dimensional vector spaces and related spaces. In the Mizar language [1], [2], variables are strictly typed, and their type conversion requires a complicated process. Our purpose is to formalize that some properties of finite dimensional vector spaces are preserved in type transformations, and to contain the complexity of type transformations into this paper. Specifically, we show that properties such as algebraic structure, subsets, finite sequences and their sums, linear combination, linear independence, and affine independence are preserved in type conversions among TOP-REAL(n), REAL-NS(n), and n-VectSp over F Real. We referred to [4], [9], and [8] in the formalization.
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.