Zhiwei Wang , Yinan Shen , Liangsheng Tian , Suwit Suthirakun , Wongsathorn Kaewraung , Qi Menghang , Hang Zhao , Xin Xin , Ruoxiu Xiao , Peng Jiang , Qu Li , Tingting Lu
{"title":"Study on novel blue-purple high-NIR reflectance pigments and acrylic coatings based on Ca2Zn1-xMxSi2O7 (M = Mn and Ni)","authors":"Zhiwei Wang , Yinan Shen , Liangsheng Tian , Suwit Suthirakun , Wongsathorn Kaewraung , Qi Menghang , Hang Zhao , Xin Xin , Ruoxiu Xiao , Peng Jiang , Qu Li , Tingting Lu","doi":"10.1016/j.progsolidstchem.2025.100522","DOIUrl":"10.1016/j.progsolidstchem.2025.100522","url":null,"abstract":"<div><div>The coating optimized with high near-infrared reflectance pigments can effectively reduce the energy consumption for heating and cooling in buildings, thereby alleviating the pressure on global energy consumption. Using a high-temperature solid-state method, blue-violet pigments with high near-infrared reflectance, Ca<sub>2</sub>Zn<sub>1-<em>x</em></sub>M<sub><em>x</em></sub>Si<sub>2</sub>O<sub>7</sub> (M = Mn, 0 ≤ <em>x</em> ≤ 0.4 and Ni, 0 ≤ <em>x</em> ≤ 0.2) solid solutions, were synthesized for the first time, with a maximum solar reflectance of 82.67%. Using XPS analysis, it was determined that the oxidation state of Ni in the pigment is +2, while Mn exists in mixed oxidation states of +2 and +3. UV-VIS-NIR spectroscopy analysis indicates that the blue-violet color of the pigment originates from the <em>d-d</em> transitions of the transition metal ions. As the doping concentration increases, the near-infrared reflectance of the pigment decreases. The DFT calculations have also confirmed that the color of pigments originates from transition metal ions. The as-synthesized pigments were incorporated into acrylic to create colored coatings. Improving the near-infrared solar reflectance of the acrylic coating. The excellent high near-infrared solar reflectance and coating property optimization make the synthesized pigment a potential energy-saving coating.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"78 ","pages":"Article 100522"},"PeriodicalIF":9.1,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144138827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liping Du, Aishu Li, Song Hu, Sheng Su, Yi Wang, Long Jiang, Jun Xu, Kai Xu, Jun Xiang
{"title":"Atomically dispersed Pt and Pt clusters on CeO2 supports for H2 production via low-temperature water-gas shift reaction","authors":"Liping Du, Aishu Li, Song Hu, Sheng Su, Yi Wang, Long Jiang, Jun Xu, Kai Xu, Jun Xiang","doi":"10.1016/j.progsolidstchem.2025.100520","DOIUrl":"10.1016/j.progsolidstchem.2025.100520","url":null,"abstract":"<div><div>Water-gas shift (WGS) reaction plays a crucial role in the steam reforming of carbon-based fuels for hydrogen production. Pt-CeO<sub>2</sub> catalysts have attracted significant attention due to their excellent low-temperature activity, and optimizing the catalytic system performance is essential for reducing energy consumption. In this study, we investigated the impact of metal dispersion differences on the catalytic activity of CeO<sub>2</sub>-supported clusters and atomically dispersed Pt catalysts from the perspectives of oxygen vacancies and metal-support interactions. The results indicated that the adsorption capacity of CO on the catalyst surface was significantly influenced by the oxidation state and aggregation of Pt, with atomically dispersed Pt<sup>0</sup> exhibiting a stronger affinity for CO. The metal-support interaction was evident in the formation of Pt-O-Ce composite bonds resulting from the incorporation of Pt ions into the CeO<sub>2</sub> lattice, which enhanced Pt accessibility on the CeO<sub>2</sub> surface. All samples demonstrated outstanding catalytic performance, achieving CO conversion exceeding 70 % and H<sub>2</sub> yield surpassing 150 mL g<sup>−1</sup> at low temperatures. The IMP-Pt characterized by an elevated oxygen vacancy concentrations (OVC) of 3.99 × 10<sup>21</sup> cm<sup>−3</sup>, arising from partially reduced Ce<sup>3+</sup> in unsaturated coordination states, exhibited a ∼10 % decline in CO conversion and a ∼20 °C increase in T<sub>50</sub>. Undercoordinated Pt clusters led to strong CO binding and high CO vibration frequencies, while the presence of Pt<sup>δ+</sup> weakened CO adsorption but promoted carbonation reactions. The superior lattice oxygen mobility and dynamic oxygen storage capacity of atomically dispersed Pt-CeO<sub>2</sub> catalysts resulted in faster calculated reaction rates on exposed Pt atoms and higher turnover frequencies.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"78 ","pages":"Article 100520"},"PeriodicalIF":9.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Original mechanism of transformation from soft metallic (sp2/sp3) C12 to ultra-dense and ultra-hard (sp3) semi-conducting C12: Crystal chemistry and DFT characterizations","authors":"Samir F. Matar","doi":"10.1016/j.progsolidstchem.2025.100521","DOIUrl":"10.1016/j.progsolidstchem.2025.100521","url":null,"abstract":"<div><div>An original mechanism is proposed for a pressure-induced transformation of orthorhombic C<sub>12</sub> from ground state normal pressure (NP) sp<sup>2</sup>/sp<sup>3</sup> allotrope to ultra-dense and ultra-hard high pressure HP sp<sup>3</sup> form. Upon volume decrease, the trigonal C<img>C parallel segments characterizing glitter-like <strong>tfi</strong> topology of NP C<sub>12</sub> change to crossing C–C segments with the loss of sp<sup>2</sup> character accompanied by a large densification with ρ = 3.64 g/cm<sup>3</sup>, larger than diamond, defining a novel orthorhombic HP C<sub>12</sub> with 4<sup>4</sup><strong>T</strong>39 topology. The crystal chemistry engineering backed with quantum density functional theory DFT-based calculations let determine the ground state structures and energy derived physical properties. Furthering on that, the E(V) equations of states (EOS) let define the equilibrium NP(E<sub>0</sub>,V<sub>0</sub>) allotrope at lower energy and higher volume versus HP(E<sub>0</sub>,V<sub>0</sub>) allotrope at higher energy and smaller volume. A potential pressure induced transformation NP→HP was estimated at ∼100 GPa, reachable with a diamond anvil cell DAC. Both allotropes were found cohesive and mechanically stable with low and large Vickers hardness magnitudes: H<sub>V</sub>(<strong>tfi</strong> C<sub>12</sub>) = 24 GPa and H<sub>V</sub>(4<sup>4</sup><strong>T</strong>39 C<sub>12</sub>) = 90 GPa; the latter being close to diamond hardness (H<sub>V</sub> ∼95 GPa). Besides, both allotropes were found dynamically stable with positive phonon frequencies and a spectroscopic signature of C<img>C high frequency bands in <strong>tfi</strong> C<sub>12</sub>. The electronic band structures show a metallic behavior for NP <strong>tfi</strong> C<sub>12</sub> and a small band gap for HP 4<sup>4</sup><strong>T</strong>39C<sub>12</sub> letting assign semiconducting properties. The work is meant to open further the scope of C (sp<sup>2</sup>)→C (sp<sup>3</sup>) transformation mechanisms that are fundamental in solid state physics and chemistry.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"78 ","pages":"Article 100521"},"PeriodicalIF":9.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143911629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond graphene basics: A holistic review of electronic structure, synthesis strategies, properties, and graphene-based electrode materials for supercapacitor applications","authors":"Sachin Kumar Yadav, Anil Kumar, Neeraj Mehta","doi":"10.1016/j.progsolidstchem.2025.100519","DOIUrl":"10.1016/j.progsolidstchem.2025.100519","url":null,"abstract":"<div><div>This review presents a comprehensive analysis of graphene-based electrode materials for supercapacitor application, focusing on electronic structure, synthesis strategies, and key attributes. The remarkable 2D-structure of graphene, characterized by sp<sup>2</sup> hybridized carbon atoms, confers exceptional electronic mobility (100000 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>), large specific surface area (2600 m<sup>2</sup>g<sup>-1</sup>), and mechanical flexibility (2.4 ± 0.4 TPa), making it an ideal contender for next-generation energy storage devices. We have discussed various synthesis strategies, including CVD, mechanical exfoliation, and chemical reduction, emphasizing their impact on the electrochemical performance of graphene electrodes. The integration of graphene with other nanomaterials, such as metal oxides, TMDs, conducting polymers, and MXenes, is explored to enhance the specific capacitance, cycle stability, and energy density of supercapacitor electrode materials. This review also covers the tunable electronic properties of graphene, addressing charge transport, ion diffusion, and electrochemical performance, which are critical for efficient supercapacitor design. Graphene-based electrodes' flexibility and mechanical stability are examined, highlighting their role in wearable and portable electronic applications. Challenges such as large-scale production, electrode degradation, and cost-effectiveness are also discussed, offering potential solutions through innovative synthesis routes and composite material design. This review provides a holistic perspective on the current advancement of graphene-based electrode materials for supercapacitor applications.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"78 ","pages":"Article 100519"},"PeriodicalIF":9.1,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elucidating interfacial behaviors of Li-ion argyrodites through μ-cavity electrode analysis","authors":"Orynbassar Mukhan , Yuvaraj Subramanian , Sharon Mugobera , Sung-Soo Kim , Kwang-Sun Ryu","doi":"10.1016/j.progsolidstchem.2025.100518","DOIUrl":"10.1016/j.progsolidstchem.2025.100518","url":null,"abstract":"<div><div>In the current scenario, All-Solid-State Batteries (ASSBs) are one of the inevitable energy storage systems due to their high energy density and safety aspects. Nonetheless, they have some limitations in their implementation for high performance solid-state lithium batteries. Notably, the reactions at the electrode and electrolyte interface, which negatively affects the Li-ion transport. From this perspective, we prepared the renowned high ionic conductive solid electrolytes (Li<sub>6</sub>PS<sub>5</sub>Cl, Li<sub>6.2</sub>P<sub>0.8</sub>Si<sub>0.2</sub>S<sub>5</sub>Cl<sub>0.5</sub>Br<sub>0.5</sub>, Li<sub>5.3</sub>PS<sub>4.3</sub>Cl<sub>1.7</sub> and Li<sub>5.3</sub>PS<sub>4.3</sub>ClBr<sub>0.7</sub>) using a ball milling process subsequent to calcination at appropriate temperatures. The prepared electrolytes exhibited ionic conductivity values of 4.5, 5.3, 9.0 and 15.9 mS cm<sup>−1</sup>, respectively. Importantly, the electrode and electrolyte interface processes are examined through microcavity electrode system using our prepared electrolyte and LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> (NCM523) cathode. In this case, a single particle confined in a micro cavity electrode system, NCM523-Li<sub>6.2</sub>P<sub>0.8</sub>Si<sub>0.2</sub>S<sub>5</sub>Cl<sub>0.5</sub>Br<sub>0.5</sub> exhibits the highest initial discharge capacity value of 5.27 nAh, and an even higher initial Coulombic efficiency of 87.9 % surpassing other micro electrode systems. This and the electrochemical kinetic parameters evaluated through the Tafel plot analysis confirm that Si substitution minimizes chemical side reactions at the interface. The electrochemical kinetic parameters reveal that Li<sub>6.2</sub>P<sub>0.8</sub>Si<sub>0.2</sub>S<sub>5</sub>Cl<sub>0.5</sub>Br<sub>0.5</sub> electrolyte has high exchange current, low charge transfer resistance and high lithium diffusion coefficient values. This proves that a favorable interface was formed between the NCM523 and the SE, thereby resulting in high rate of lithium-ion exchange between the NCM523 and the SE. The comparative study confirms the electrochemical kinetics improved by the bromine and silicon incorporation in the Li-argyrodite structure and offers flexible Li-ion pathways for better electrochemical performances.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"78 ","pages":"Article 100518"},"PeriodicalIF":9.1,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boosting photoluminescence of Ba5P6O20:Dy3+ phosphor through facile alkali charge compensation","authors":"Yiting Huang , Xiaoyang Zhao , Zibo Huang , Jingkai Quan , Youwen Tang , Chenyang Jia , Jianguo Jia , Jintao Xie , Yanqiong Shen , Jing Zhu","doi":"10.1016/j.progsolidstchem.2025.100517","DOIUrl":"10.1016/j.progsolidstchem.2025.100517","url":null,"abstract":"<div><div>Trivalent dysprosium (Dy<sup>3+</sup>)-activated inorganic phosphors have become fascinating due to tunable yellow/white light emission. Nevertheless, the challenge for solid-state lighting utilization is achieving highly luminous efficiency and thermostability of Dy<sup>3+</sup>. In this study, a new Ba<sub>5</sub>P<sub>6</sub>O<sub>20</sub> (BPO) phosphor is developed via replacing Ba<sup>2+</sup> with Dy<sup>3+</sup>. The luminescence behaviors in response to the occupancy sites and content of Dy<sup>3+</sup> activators are thoroughly investigated. Subsequently, to enhance comprehensive luminescence performances, alkali metal ions are co-doped based on charge compensation strategy. Especially, the K<sup>+</sup> compensation can induce that the luminous efficiency and intensity are increased by around 4 and 2 times, separately. Meanwhile, the high thermal quenching resistance and chromaticity shifting resistance for Dy<sup>3+</sup> emissions are achieved. Finally, the optimized BPO:5%Dy<sup>3+</sup>,5%K<sup>+</sup> sample is employed to obtain a satisfactory solid-state white lighting source.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"78 ","pages":"Article 100517"},"PeriodicalIF":9.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Yttrium iron garnets: Phase study and synthesis methods","authors":"N. Askarzadeh, H. Shokrollahi","doi":"10.1016/j.progsolidstchem.2024.100507","DOIUrl":"10.1016/j.progsolidstchem.2024.100507","url":null,"abstract":"<div><div>Due to the rapid progress in the development of communication systems, magnetic ceramics-including spinels, hexaferrites, and garnets-have become increasingly attractive for use in various electronic and optoelectronic devices, particularly in the microwave range. Among the different types of ferrites, garnets generally exhibit higher electrical resistivity, lower dielectric losses, softer magnetic behavior, higher Curie points, and narrower ferromagnetic resonance linewidth. These properties make garnets suitable for spintronic technology, electro-optical applications, and the microwave/GHz domain, including devices such as phase shifters, circulators, and isolators. This important class of ferrimagnetic materials is found in two different compositional forms: unsubstituted garnets, or yttrium iron garnets (Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>, YIG), and substituted garnets (R<sub>x</sub>Y<sub>3-x</sub>M<sub>y</sub>Fe<sub>5-y</sub>O<sub>12</sub>). In addition to changes in chemical composition through doping and/or substitution of elements, other factors that can affect the performance of garnets include synthesis methods and heat treatment. Given the recent interest in nanotechnology, various shapes—including nanoparticles, thin films, nanorods, and nanotubes—have been considered alongside the bulk structure, either as composites or in uncombined forms, to develop materials for specific applications. This paper aims to provide an overview of the crystal structure, phase study, and various synthetic methods of garnets concerning their magnetic and structural behaviors.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"77 ","pages":"Article 100507"},"PeriodicalIF":9.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143131075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress and outlook of ferroelectric/non-ferroelectric polar glass-ceramics for multi-catalytic applications","authors":"Chirag Porwal , Gurpreet Singh , Moolchand Sharma , Vishal Singh Chauhan , Rahul Vaish","doi":"10.1016/j.progsolidstchem.2024.100497","DOIUrl":"10.1016/j.progsolidstchem.2024.100497","url":null,"abstract":"<div><div>Glass-ceramics have been long recognized for their capability to offer shared characteristics of both glassy as well as crystalline phases. By controlling volume fraction of crystalline phase dispersed in glassy matrix, the properties of glass-ceramics can be tuned for variety of applications such as dental implants, heat-resistant cooking ware, missiles nozzle cones, etc. A specific family of glass-ceramics that consists of ferroelectric/non-ferroelectric polar crystallites offers second-harmonic generation, pyroelectric, piezoelectric, and ferroelectric properties for actuators, sensors, non-linear optical devices, and lasers applications, that were traditionally not possible in glassy materials. Fabrication, crystallization behavior, and electrical properties of such glass-ceramics have been extensively studied in the last decade and widely reviewed in multiple documents in the literature. Recently, the presence of ferroelectric/non-ferroelectric polar crystallites in glasses unveils the new environmental applications of glass-ceramics using photocatalysis, piezocatalysis, and tribocatalysis processes stimulated by light, mechanical, and frictional energy, respectively. Ferroelectric/non-ferroelectric polar glass-ceramics for multi-catalysis is relatively a new and emerging area, that have potential to provide solution for real-environmental problems such as water-pollution. Thus, this review provides a comprehensive overview of multi-catalytic nature of ferroelectric/non-ferroelectric polar glass-ceramics. It discusses the underlying catalytic mechanisms and unveils the performance of these glass-ceramics in environmental applications. It highlights the advantages and challenges of ferroelectric/non-ferroelectric polar glass-ceramics as photo/piezo/tribocatalysts. This review will motivate glass researchers to work in the area of environmental applications of glass-ceramics using catalytic processes.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"77 ","pages":"Article 100497"},"PeriodicalIF":9.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143131074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zuo-Bei Wang , Xin Ye , Jie Yang , Yong-Hui Zhang , Zi-Ang Nan , Yi-Fan Wang , You-Gui Huang , Wei Wang
{"title":"Boosting the phosphorus uptake of La2(CO3)3·8H2O based adsorbents via sodium addition: Relationship between crystal structure and adsorption capacity","authors":"Zuo-Bei Wang , Xin Ye , Jie Yang , Yong-Hui Zhang , Zi-Ang Nan , Yi-Fan Wang , You-Gui Huang , Wei Wang","doi":"10.1016/j.progsolidstchem.2024.100496","DOIUrl":"10.1016/j.progsolidstchem.2024.100496","url":null,"abstract":"<div><div>Excess phosphate contents in water bodies triggers eutrophication, which posts significant challenges to the aquatic ecosystem. Lanthanum-carbonate based adsorbents exhibit excellent phosphate binding properties for remediating eutrophication. However, they suffer from significant adsorption-capacity loss (>85 %) at high pH. Little has been done on understanding this behavior for improving the phosphorus adsorption of lanthanum-carbonate adsorbents in alkaline environments (<em>e.g.</em> eutrophic water bodies). Here, we discover that La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>·8H<sub>2</sub>O, when produced by a conversion reaction from NaLa(CO<sub>3</sub>)<sub>2</sub>·xH<sub>2</sub>O, exhibits high phosphate adsorption capacity in a wide pH window. Under alkaline conditions (<em>e.g.</em> pH = 10), its adsorption capacity decreases by only 8 % compared to the value under neutral pH. By isolating three different lanthanum-carbonate based compounds and analyzing their molecular structures, we find that the trace amount of Na<sup>+</sup> residual in our La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>·8H<sub>2</sub>O alters the chemical environment surrounding the La<sup>3+</sup> ions, which may significantly boost the phosphate uptake at high pH. Our results provide molecular insights for further tuning the material structure of phosphate adsorbents to achieve robust performances.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"76 ","pages":"Article 100496"},"PeriodicalIF":9.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Feng , K.B. Tan , S.K. Chang , Y. Sulaiman , H.N. Lim , M. Lu , Y. Wang
{"title":"Investigation of Sr-substituted Ba1-xSrx(Zn1/3Nb2/3)O3 complex perovskites: Structural, electrical and electrochemical properties","authors":"Y. Feng , K.B. Tan , S.K. Chang , Y. Sulaiman , H.N. Lim , M. Lu , Y. Wang","doi":"10.1016/j.progsolidstchem.2024.100495","DOIUrl":"10.1016/j.progsolidstchem.2024.100495","url":null,"abstract":"<div><div>Herein we report the structural, dielectric and electrochemical properties of Ba<sub>1-x</sub>Sr<sub>x</sub>(Zn<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> (BSZN, 0 ≤ x ≤ 1) solid solution synthesised by solid-state reaction. A complete substitutional solid solution was obtained, wherein the BSZN cubic perovskites of the space group of <em>Pm</em> <span><math><mrow><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> <em>m</em> were obtained at x ≤ 0.6 while the pseudo-cubic phases were discernible at x > 0.6. The nano-sized crystallites, as determined by both Scherrer and Williamson-Hall analyses, supported the claim of large polyhedral grains of 0.1–0.3 μm by FE-SEM. Both <em>ε</em>′ and tan δ were found to vary consistently with increasing dopant concentration, except for an anomalous observation for the composition, x = 0.6 with the lowest tan δ of 0.0783 and the highest <em>ε</em>′ of 27.5. Such phenomenon could be attributed to the combined effects of larger grain size, higher relative density and stronger polarisation per molar volume. The impedance analysis revealed that these BSZN perovskites were of the negative temperature coefficient of resistance (NTCR) type. The combined plots of imaginary modulus (<em>M</em>″) and impedance (<em>Z</em>″) against frequency showed the short-range movement of localised charge carriers, suggesting a non-Debye-type relaxation process.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"76 ","pages":"Article 100495"},"PeriodicalIF":9.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}