N. Lakshminarasimhan , A.K. Nanda Kumar , S. Selva Chandrasekaran , P. Murugan
{"title":"Structure-magnetic property relations in FeNbO4 polymorphs: A spin glass perspective","authors":"N. Lakshminarasimhan , A.K. Nanda Kumar , S. Selva Chandrasekaran , P. Murugan","doi":"10.1016/j.progsolidstchem.2019.03.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2019.03.001","url":null,"abstract":"<div><p>Spin glass state originating from the magnetic frustration due to the geometric arrangement or cation disorder is an interesting topic of research. FeNbO<sub>4</sub>, exhibiting multifarious applications, crystallizes mainly in three different polymorphic forms with cation ordered and disordered structures. Despite their antiferromagnetic nature, the orthorhombic (<em>o</em>-FeNbO<sub>4</sub>) and monoclinic FeNbO<sub>4</sub> (<em>m</em>-FeNbO<sub>4</sub><span>) polymorphs exhibit a difference in their magnetic properties at low temperatures. Here, we report our observation of spin glass behaviour of </span><em>o</em>-FeNbO<sub>4</sub> with a cation disordered structure. Our work is a combined experimental and theoretical study of structure-magnetic property relations of the antiferromagnetic <em>o</em>- and <em>m</em>-FeNbO<sub>4</sub><span> with the Néel temperatures of 30 and 46 K, respectively. </span><em>o</em>-FeNbO<sub>4</sub> contrasted itself from <em>m</em>-FeNbO<sub>4</sub><span><span> as a spin glass by exhibiting field-dependent bifurcation in ZFC and FC magnetization, frequency-dependent AC susceptibility, memory effect, thermoremanence, and anamoly in the heat capacity. The presence of antiphase domains and boundaries due to cation order/disorder in both the structural polymorphs was evidenced from the electron diffraction analyses that account for the observed low temperature magnetic interactions. Further, modeling the structures with varying amounts of cation disorder using </span>first principles calculations revealed the structural stability and competing spin interactions that support our experimentally observed spin glass behaviour of </span><em>o</em>-FeNbO<sub>4</sub>.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"54 ","pages":"Pages 20-30"},"PeriodicalIF":12.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Tsang, Kai Li, Yuxuan Zeng, Wei Zhao, Tao Zhang, Yujie Zhan, R. Xie, D. Leung, Haibao Huang
{"title":"WITHDRAWN: Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast","authors":"C. Tsang, Kai Li, Yuxuan Zeng, Wei Zhao, Tao Zhang, Yujie Zhan, R. Xie, D. Leung, Haibao Huang","doi":"10.1016/J.PROGSOLIDSTCHEM.2019.04.002","DOIUrl":"https://doi.org/10.1016/J.PROGSOLIDSTCHEM.2019.04.002","url":null,"abstract":"","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":" ","pages":""},"PeriodicalIF":12.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/J.PROGSOLIDSTCHEM.2019.04.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42623753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayesha Khan Tareen , G. Sudha Priyanga , Santosh Behara , Tiju Thomas , Minghui Yang
{"title":"Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance","authors":"Ayesha Khan Tareen , G. Sudha Priyanga , Santosh Behara , Tiju Thomas , Minghui Yang","doi":"10.1016/j.progsolidstchem.2018.11.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2018.11.001","url":null,"abstract":"<div><p><span>Ternary transition metal nitrides<span> (TTMNs) have acquired substantial attention due to the ability to offer for tuning properties. Furthermore efforts to develop new TTMNs have resulted in the development of new syntheses approaches. In this review, recent progress made regarding investigations on electronic structure, stoichiometry, crystal structures, synthesis and applications are reviewed. Intermediate bonding in these solids exist in the structure types revealed so far. Bonding in these systems are an intriguing mix of ionic (oxide-like) and covalent (carbide-like). This enhances the possibilities of finding unique structures (i.e. anti-fluorite analogous [1]). A good case in point is the Delafosite types and η-nitrides structures found commonly in TTMNs which are typically associated with ABO</span></span><sub>x</sub><span><span> type oxides and carbides. Due to the rich structural chemistry associated with TTMNs, their study is considered a growing area in solid state and applied chemistry. Advancement made in the synthesis of powder and thin film<span><span><span> materials of TTMNs are discussed. The powder methods involve the following methods: solid state, high-pressure-high temperature, solvothermal method, ammonothermal method, sol-gel method, Pechini method, temperature-programmed reduction, </span>thermal degradation of metal complex, solid-state metal oxide-organic reaction, solid state </span>ion exchange reaction<span>, and electrodeposition replacement method. On the other hand, the TTMN thin film fabrication is based on two types of methods; physical </span></span></span>vapor deposition<span> (PVD) and chemical vapor deposition (CVD) method. The PVD involve deposition using different ways using laser or plasma based approaches (eg. pulsed laser deposition<span> (PLD)) and magnetron sputtering<span>. Chemical vapor deposition methods involve electrodeposition reaction method. Among all synthesis methods, the sol-gel process following the ammonolysis<span><span> is considered comparatively better for large scale production owing to the simple apparatus setup. Different synthesis methods are deployable based on the application at hand. Applications can be range from electrocatalysts in </span>ORR<span> reaction [2,3], electrocatalysts as sensor [4], supercapacitors [2,3,5], solar cell [6], magnetic, superconducting [7], hard coating materials [8] e.g. protective, functional, conductive, wear-resistance and decorative coating, NH</span></span></span></span></span></span><sub>3</sub> synthesis [9], and hydrogenation process in hydrocarbon reactions [10].</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"53 ","pages":"Pages 1-26"},"PeriodicalIF":12.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.11.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2414525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The complex nonstoichiometry of wüstite Fe1-zO: Review and comments","authors":"Jean-Raymond Gavarri , Claude Carel","doi":"10.1016/j.progsolidstchem.2018.10.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2018.10.001","url":null,"abstract":"<div><p>Thermodynamic properties and structural aspects of the nonstoichiometric wüstite Fe<sub>1-<strong><em>z</em></strong></sub>O, and its modifications - the so-called pseudo-phases - as functions of departure <strong><em>z</em></strong><span> from stoichiometry<span><span> and of equilibrium temperature are reviewed from 1960 to present. The complexity of the equilibrium phase diagram is described in some details. The first order transition W ⇆ W′ is specified on the iron/wüstite boundary near 1185 K. Transitions correlated to the modifications Wi at T(W) > 1185 K and W'j at T(W′) < 1185 K (i and j = 1,2,3) are re-examined. Structural determinations based on the characterization of </span>point defects stabilization and of their clustering are reviewed. Additionally, the pseudo-phases are examined based on the transformation of defect clusters or of their mode of distribution (</span></span><em>i.e.,</em><span> percolation or superstructure) with the inclusion of changes in electronic charge carriers.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"53 ","pages":"Pages 27-49"},"PeriodicalIF":12.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2344692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts","authors":"Vijaykumar S. Marakatti, Sebastian C. Peter","doi":"10.1016/j.progsolidstchem.2018.09.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2018.09.001","url":null,"abstract":"<div><p><span>Intermetallic compounds (IMCs) exhibits unique structural features accompanied by appropriate changes in the electronic structures. These electronically and geometrically tuned structures found to be the excellent catalysts for selected chemical reactions. There is not enough literature comprising detailed synthesis, properties and catalytic activity of IMCs. In this review, a complete overview of the IMCs in the field of </span>heterogeneous catalysis<span><span> has been discussed in detail. The review starts with understanding IMCs and how are they different from alloys, solid solutions and bimetallic. The physicochemical properties such as electronic effect, geometrical effect, steric effect and ordering of the IMCs are explained with appropriate examples. The comprehensive discussion on the synthesis and characterization of IMCs by various methods are also included in the review. The review cover the classification of IMCs into mainly 3 groups based on the active metal a) Platinum b) Palladium c) Nickel and the compounds based on each of these family is discussed along with the structure-activity correlation in different organic reactions. Several miscellaneous examples including other active metals Rh, </span>Ru, Al, and Co are also included in the review followed by the future perspective. Overall, one can fine-tune and design the essential electronic -geometrical properties in the IMCs by combining appropriate metals, leading to the new surface properties suitable for the important organic reactions.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"52 ","pages":"Pages 1-30"},"PeriodicalIF":12.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2018.09.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2660429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CO2 reduction using oxynitrides and nitrides under visible light","authors":"Kazuhiko Maeda","doi":"10.1016/j.progsolidstchem.2017.11.003","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2017.11.003","url":null,"abstract":"<div><p>Reduction of CO<sub>2</sub><span><span> using a heterogeneous photocatalyst under </span>visible light has been studied as a potential means to address the problems of global warming and the depletion of fossil fuels. Recently, hybrid photocatalysts constructed with a metal complex and a particulate semiconductor are of particular interest because of the excellent electrochemical (and/or photocatalytic) ability of the metal complexes for CO</span><sub>2</sub><span> reduction and the high efficiency of the semiconductors for oxidation reactions, where the ultimate target of oxidation reaction is water oxidation to form molecular O</span><sub>2</sub><span>. This review article highlights our recent progress in the development of metal-complex/semiconductor hybrid materials for visible-light CO</span><sub>2</sub><span> reduction with a focus on oxynitride<span> and nitride materials as the semiconductor component.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"51 ","pages":"Pages 52-62"},"PeriodicalIF":12.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.11.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2660431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remarkable effects of local structure in tantalum and niobium oxynitrides","authors":"Shinichi Kikkawa, Akira Hosono, Yuji Masubuchi","doi":"10.1016/j.progsolidstchem.2017.08.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2017.08.001","url":null,"abstract":"<div><p><span>Compounds that contain two types of anion are attracting attention as a new field of solid state chemistry. The nitride<span><span> anion is similar to the oxide anion in size and nature. They coordinate together to cations in oxynitrides to form characteristic local structures around them in a certain way. Special properties induced by the specific local structure have been observed in oxynitrides. </span>Ferroelectricity<span><span> was identified in oxynitride perovskites, especially those of </span>tantalum, because the oxide and nitride anions form a polar ordered local crystal structure around Ta</span></span></span><sup>5+</sup> in the 5d<sup>0</sup><span><span> electron configuration. The critical current density in superconductivity<span> was enhanced by the formation of clusters in niobium oxynitrides with the rocksalt-type structure. Main group elements doped into the niobium oxynitrides, especially </span></span>silicon, are coordinated mainly by oxides with some amount of nitrides to form silicon oxide-like clusters. The niobium in the oxynitride has some 4d electrons to maintain the superconductivity in the niobium oxynitride host. Here, the preparation, crystal structure and properties of oxynitrides formed with tantalum and niobium are reviewed.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"51 ","pages":"Pages 71-80"},"PeriodicalIF":12.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.08.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanja Scholz , Arno L. Görne , Richard Dronskowski
{"title":"Itinerant nitrides and salt-like guanidinates – The diversity of solid-state nitrogen chemistry","authors":"Tanja Scholz , Arno L. Görne , Richard Dronskowski","doi":"10.1016/j.progsolidstchem.2017.04.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2017.04.001","url":null,"abstract":"<div><p><span>Recent advances in the chemistry of two peculiar nitrogen-based materials, that is, ternary itinerant iron nitrides and unsubstituted guanidinate salts, are reviewed. Key to their synthesis is the versatile tool ammonia, either as a gas or as a liquid. For metallic nitrides </span><em>M</em><sub><em>x</em></sub>Fe<sub>4−<em>x</em></sub>N including transition-metal and main-group elements <em>M</em>, it is of paramount importance to follow an improved ammonolytic reaction for achieving both stable and metastable compounds; in addition, there is a magnetic effect acting on the crystal structure of Ga<sub><em>x</em></sub>Fe<sub>4−<em>x</em></sub>N, and one also finds spin-glass behavior in main-group nitrides (<em>M</em> = Ga, Ge, Sn). The guanidinate review features an oxidation-controlled low-temperature synthesis of Yb salts, the first magnetic guanidinates, and the doubly-deprotonated guanidinates; the latter represent the all-nitrogen analogues of the ubiquitous carbonates. The covered guanidinates adopt the compositions <em>M</em>CN<sub>3</sub>H<sub>4</sub>, <em>M</em>(CN<sub>3</sub>H<sub>4</sub>)<sub>2</sub>, <em>M</em>(CN<sub>3</sub>H<sub>4</sub>)<sub>3</sub> and <em>M</em>C(NH)<sub>3</sub> (<em>M</em> = Li–Cs, Sr, Eu, Yb). We also cover the application of first-principles calculations at all levels to gain a deeper understanding of the studied materials.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"51 ","pages":"Pages 1-18"},"PeriodicalIF":12.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.04.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2344693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nitride and oxynitride phosphors for white LEDs: Synthesis, new phosphor discovery, crystal structure","authors":"Takashi Takeda, Rong-Jun Xie, Takayuki Suehiro, Naoto Hirosaki","doi":"10.1016/j.progsolidstchem.2017.11.002","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2017.11.002","url":null,"abstract":"<div><p>Si,Al containing nitride<span><span> and oxynitride phosphors have been applied to white </span>LEDs<span>. Phosphors play important roles to produce high color rendering in lighting and wide color gamut in display. Si,Al containing nitrides and oxynitrides have been studied as high-temperature materials with high strength<span> and thermal shock resistance. The inherited high temperature property is utilized as low thermal quenching in luminescence. The increased covalent bonding character compared to oxide phosphors contributes to high efficiency in blue excitation. The crystal structure (especially the coordination sphere around luminescent center) dominates the luminescent property of phosphor. Wide variety of crystal structure in Si,Al containing nitride and oxynitride leads to multiplicity of luminescent property. In this contribution, Si,Al containing nitride and oxynitride phosphors are reviewed from viewpoints of synthesis, new phosphor discovery, and crystal structure.</span></span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"51 ","pages":"Pages 41-51"},"PeriodicalIF":12.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.11.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic iron nitrides inspired by historic research on α″-Fe16N2","authors":"Shinichi Kikkawa, Yuji Masubuchi","doi":"10.1016/j.progsolidstchem.2017.06.001","DOIUrl":"https://doi.org/10.1016/j.progsolidstchem.2017.06.001","url":null,"abstract":"<div><p><span>Strong ferromagnetic materials<span> at room temperature are of interest for various magnetic applications such as magnetic recording, sensors, and motors. Gigantic magnetism expected for α″-Fe</span></span><sub>16</sub>N<sub>2</sub><span><span> thin films had been attracted much attention in terms of its large magnetization per weight in comparison to rare earth iron </span>nitrides R</span><sub>2</sub>Fe<sub>17</sub>N<sub>3</sub> because these films are made of only iron and nitrogen. It developed much straggling on iron nitride thin film research but inconsistent results were obtained using different preparation methods. A powdered α″-Fe<sub>16</sub>N<sub>2</sub><span>-like compound was prepared by the ammonolysis of fine α-Fe powder in low temperature below 200 °C to clarify the confusion; the magnetism was not large in α″-Fe</span><sub>16</sub>N<sub>2</sub> itself but was increased in the intermediate ammonolysis dual-phase mixture product of the α″-Fe<sub>16</sub>N<sub>2</sub><span>-like compound and residual α-Fe. A way to control the magnetic coercivity was subsequently investigated to utilize the larger magnetization in the α″-Fe</span><sub>16</sub>N<sub>2</sub>-like compound mixture as magnetic materials similarly to Sm<sub>2</sub>Fe<sub>17</sub>N<sub>3</sub><span> bonded magnet. Iron nitrides, zinc blende type γ″-FeN and rock-salt type </span><strong>γ</strong><span>‴-FeN, also decompose at around 500 °C. Thermal decomposition<span> was a disadvantage in the preparation of the iron nitrides; however, iron nanoparticles<span> dispersed composites in AlN matrix were derived from the iron nitrides (Fe,Al)N by thermal treatment including laser heating. Iron nitrides are thus promising magnetic materials for their potential applications in science and technology.</span></span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"51 ","pages":"Pages 19-26"},"PeriodicalIF":12.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2017.06.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}