Progress in Particle and Nuclear Physics最新文献

筛选
英文 中文
Physics with CEBAF at 12 GeV and future opportunities 物理学与CEBAF在12 GeV和未来的机会
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-11-01 DOI: 10.1016/j.ppnp.2022.103985
J. Arrington , M. Battaglieri , A. Boehnlein , S.A. Bogacz , W.K. Brooks , E. Chudakov , I. Cloët , R. Ent , H. Gao , J. Grames , L. Harwood , X. Ji , C. Keppel , G. Krafft , R.D. McKeown , J. Napolitano , J.W. Qiu , P. Rossi , M. Schram , S. Stepanyan , X. Zheng
{"title":"Physics with CEBAF at 12 GeV and future opportunities","authors":"J. Arrington ,&nbsp;M. Battaglieri ,&nbsp;A. Boehnlein ,&nbsp;S.A. Bogacz ,&nbsp;W.K. Brooks ,&nbsp;E. Chudakov ,&nbsp;I. Cloët ,&nbsp;R. Ent ,&nbsp;H. Gao ,&nbsp;J. Grames ,&nbsp;L. Harwood ,&nbsp;X. Ji ,&nbsp;C. Keppel ,&nbsp;G. Krafft ,&nbsp;R.D. McKeown ,&nbsp;J. Napolitano ,&nbsp;J.W. Qiu ,&nbsp;P. Rossi ,&nbsp;M. Schram ,&nbsp;S. Stepanyan ,&nbsp;X. Zheng","doi":"10.1016/j.ppnp.2022.103985","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103985","url":null,"abstract":"<div><p><span>We summarize the ongoing scientific program of the 12 GeV Continuous Electron Beam<span> Accelerator Facility (CEBAF) and give an outlook into future opportunities. The program addresses important topics in nuclear, hadronic, and electroweak physics, including nuclear femtography, meson and </span></span>baryon<span><span> spectroscopy, quarks and gluons in nuclei, precision tests of the </span>standard model<span> and dark sector searches. Potential upgrades of CEBAF and their impact on scientific reach are discussed, such as higher luminosity, the addition of polarized and unpolarized positron beams, and doubling the beam energy.</span></span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1635564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Novel approaches in hadron spectroscopy 强子光谱学的新方法
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-11-01 DOI: 10.1016/j.ppnp.2022.103981
Miguel Albaladejo , Łukasz Bibrzycki , Sebastian M. Dawid , César Fernández-Ramírez , Sergi Gonzàlez-Solís , Astrid N. Hiller Blin , Andrew W. Jackura , Vincent Mathieu , Mikhail Mikhasenko , Victor I. Mokeev , Emilie Passemar , Alessandro Pilloni , Arkaitz Rodas , Jorge A. Silva-Castro , Wyatt A. Smith , Adam P. Szczepaniak , Daniel Winney , (Joint Physics Analysis Center)
{"title":"Novel approaches in hadron spectroscopy","authors":"Miguel Albaladejo ,&nbsp;Łukasz Bibrzycki ,&nbsp;Sebastian M. Dawid ,&nbsp;César Fernández-Ramírez ,&nbsp;Sergi Gonzàlez-Solís ,&nbsp;Astrid N. Hiller Blin ,&nbsp;Andrew W. Jackura ,&nbsp;Vincent Mathieu ,&nbsp;Mikhail Mikhasenko ,&nbsp;Victor I. Mokeev ,&nbsp;Emilie Passemar ,&nbsp;Alessandro Pilloni ,&nbsp;Arkaitz Rodas ,&nbsp;Jorge A. Silva-Castro ,&nbsp;Wyatt A. Smith ,&nbsp;Adam P. Szczepaniak ,&nbsp;Daniel Winney ,&nbsp;(Joint Physics Analysis Center)","doi":"10.1016/j.ppnp.2022.103981","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103981","url":null,"abstract":"<div><p>The last two decades have witnessed the discovery of a myriad of new and unexpected hadrons<span>. The future holds more surprises for us, thanks to new-generation experiments. Understanding the signals and determining the properties of the states requires a parallel theoretical effort. To make full use of available and forthcoming data, a careful amplitude modeling is required, together with a sound treatment of the statistical uncertainties, and a systematic survey of the model dependencies. We review the contributions made by the Joint Physics Analysis Center to the field of hadron spectroscopy.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3139627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Cosmic nucleosynthesis: A multi-messenger challenge 宇宙核合成:多信使挑战
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-11-01 DOI: 10.1016/j.ppnp.2022.103983
Roland Diehl , Andreas J. Korn , Bruno Leibundgut , Maria Lugaro , Anton Wallner
{"title":"Cosmic nucleosynthesis: A multi-messenger challenge","authors":"Roland Diehl ,&nbsp;Andreas J. Korn ,&nbsp;Bruno Leibundgut ,&nbsp;Maria Lugaro ,&nbsp;Anton Wallner","doi":"10.1016/j.ppnp.2022.103983","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103983","url":null,"abstract":"<div><p>The origins of the elements and isotopes of cosmic material is a critical aspect of understanding the evolution of the universe. Nucleosynthesis typically requires physical conditions of high temperatures and densities. These are found in the Big Bang, in the interiors of stars, and in explosions with their compressional shocks and high neutrino and neutron fluxes<span>. Many different tools are available to disentangle the composition of cosmic matter, in material of extraterrestrial origins such as cosmic rays, meteorites<span><span>, stardust grains, lunar and terrestrial sediments, and through astronomical observations across the electromagnetic spectrum. Understanding </span>cosmic abundances<span> and their evolution requires combining such measurements with approaches of astrophysical, nuclear theories and laboratory experiments, and exploiting additional cosmic messengers, such as neutrinos and gravitational waves. Recent years have seen significant progress in almost all these fields; they are presented in this review.</span></span></span></p><p><span><span>The Sun and the solar system are our reference system for abundances of elements and isotopes. Many direct and indirect methods are employed to establish a refined abundance record from the time when the Sun and the Earth were formed. Indications for nucleosynthesis in the local environment when the Sun was formed are derived from meteoritic material and inclusion of radioactive atoms in deep-sea sediments. Spectroscopy at many wavelengths and the neutrino flux from the hydrogen fusion processes in the Sun have established a refined model of how the </span>nuclear energy production<span> shapes stars. Models are required to explore nuclear fusion of heavier elements. These stellar evolution<span><span> calculations have been confirmed by observations of nucleosynthesis products in the ejecta of stars and </span>supernovae, as captured by stardust grains and by characteristic lines in spectra seen from these objects. One of the successes has been to directly observe </span></span></span><span><math><mi>γ</mi></math></span><span> rays from radioactive material synthesised in stellar explosions, which fully support the astrophysical models. Another has been the observation of radioactive afterglow and characteristic heavy-element spectrum from a neutron-star merger, confirming the neutron rich environments encountered in such rare explosions. The ejecta material captured by Earth over millions of years in sediments and identified through characteristic radio-isotopes suggests that nearby nucleosynthesis occurred in recent history, with further indications for sites of specific nucleosynthesis. Together with stardust and diffuse </span><span><math><mi>γ</mi></math></span> rays from radioactive ejecta, these help to piece together how cosmic materials are transported in interstellar space and re-cycled into and between generations of stars. Our description of cosmic compositional e","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3139628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Holographic approach to compact stars and their binary mergers 致密恒星及其双星合并的全息方法
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-09-01 DOI: 10.1016/j.ppnp.2022.103972
Carlos Hoyos , Niko Jokela , Aleksi Vuorinen
{"title":"Holographic approach to compact stars and their binary mergers","authors":"Carlos Hoyos ,&nbsp;Niko Jokela ,&nbsp;Aleksi Vuorinen","doi":"10.1016/j.ppnp.2022.103972","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103972","url":null,"abstract":"<div><p>In this review article, we describe the role of holography in deciphering the physics of dense QCD matter, relevant for the description of compact stars and their binary mergers. We review the strengths and limitations of the holographic duality in describing strongly interacting matter at large baryon density, walk the reader through the most important results derived using the holographic approach so far, and highlight a number of outstanding open problems in the field. Finally, we discuss how we foresee holography contributing to compact-star physics in the coming years.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3270352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Nuclear weak rates and nuclear weak processes in stars 恒星中的核弱速率和核弱过程
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-09-01 DOI: 10.1016/j.ppnp.2022.103974
Toshio Suzuki
{"title":"Nuclear weak rates and nuclear weak processes in stars","authors":"Toshio Suzuki","doi":"10.1016/j.ppnp.2022.103974","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103974","url":null,"abstract":"<div><p><span><span>Nuclear weak rates in stellar environments are obtained by taking into account recent advances in shell-model studies of spin-dependent excitation modes in nuclei including Gamow–Teller (GT) and spin-dipole transitions. They are applied to nuclear weak processes in stars such as cooling and heating of the cores of stars and nucleosynthesis in supernovae. The important roles of accurate weak rates for the study of </span>astrophysical processes are pointed out in the following cases. (1) The electron-capture (e-capture) and </span><span><math><mi>β</mi></math></span>-decay rates in <span><math><mrow><mi>s</mi><mi>d</mi></mrow></math></span>-shell are evaluated with the USDB Hamiltonian and used to study the evolution of O-Ne-Mg cores in stars with 8–10 M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>. The important roles of the <span><math><mi>A</mi></math></span> <span><math><mo>=</mo></math></span><span> 23 and 25 pairs of nuclei for the cooling of the cores by nuclear Urca processes are investigated. (2) They are also used to study heating of the O-Ne-Mg core by double e-captures on </span><sup>20</sup>Ne in later stages of the evolution. Especially, the e-capture rates for a second-forbidden transition in <sup>20</sup><span>Ne are evaluated with the multipole expansion method by Walecka as well as the method of Behrens–B</span><span><math><mover><mrow><mtext>u</mtext></mrow><mrow><mo>̈</mo></mrow></mover></math></span>hring. Possible important roles of the transition in heating the O-Ne-Mg cores and implications on the final fate of the cores (core-collapse or thermonuclear explosion) are discussed. (3) The weak rates in <span><math><mrow><mi>p</mi><mi>f</mi></mrow></math></span><span><span>-shell nuclei are evaluated with a new Hamiltonian, GXPF1J, and applied to nucleosynthesis of iron-group elements in Type Ia supernova explosions. The over-production problem of neutron-rich </span>iron isotopes<span> compared with the solar abundances, which remained for the rates according to Fuller, Fowler and Newman, is much improved, and the over-production is now reduced to be within a factor of two. (4) The weak rates for nuclei with two-major shells are evaluated. For </span></span><span><math><mrow><mi>s</mi><mi>d</mi></mrow></math></span>-<span><math><mrow><mi>p</mi><mi>f</mi></mrow></math></span> shell in the island of inversion, the weak rates for the <span><math><mi>A</mi></math></span> <span><math><mo>=</mo></math></span> 31 pair of nuclei, which are important for nuclear Urca processes in neutron-star crusts, are evaluated with the effective interaction obtained by the extended Kuo–Krenciglowa (EKK) method. Neutron-rich nuclei with and near neutron number (<span><math><mi>N</mi></math></span>) of 50 are important for core-collapse processes in supernova explosions. The transition strengths and e-capture rates in <sup>78</sup>Ni are evaluated with a new shell-model Hamiltonian for the <span><math","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3270353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism 标准机制中核中微子双β衰变的超平均场方法
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-09-01 DOI: 10.1016/j.ppnp.2022.103965
J.M. Yao , J. Meng , Y.F. Niu , P. Ring
{"title":"Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism","authors":"J.M. Yao ,&nbsp;J. Meng ,&nbsp;Y.F. Niu ,&nbsp;P. Ring","doi":"10.1016/j.ppnp.2022.103965","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103965","url":null,"abstract":"<div><p><span>Nuclear weak decays provide important probes to fundamental symmetries in nature. A precise description of these processes in atomic nuclei requires comprehensive knowledge on both the strong and weak interactions in the nuclear medium and on the dynamics of quantum many-body systems. In particular, an observation of the hypothetical double beta decay without emission of neutrinos (</span><span><math><mrow><mn>0</mn><mi>ν</mi><mi>β</mi><mi>β</mi></mrow></math></span><span>) would unambiguously demonstrate the Majorana nature of neutrinos and the existence of the lepton-number-violation process. It would also provide unique information on the ordering and absolute scale of neutrino masses. The next-generation tonne-scale experiments with sensitivity up to </span><span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>28</mn></mrow></msup></mrow></math></span><span> years after a few years of running will probably provide a definite answer to these fundamental questions based on our current knowledge on the nuclear matrix element (NME), the precise determination of which is a challenge to nuclear theory. Beyond-mean-field approaches have been frequently adapted for the study of nuclear structure and decay throughout the nuclear chart for several decades. In this review, we summarize the status of beyond-mean-field calculations of the NMEs of </span><span><math><mrow><mn>0</mn><mi>ν</mi><mi>β</mi><mi>β</mi></mrow></math></span> decay assuming the standard mechanism of an exchange of light Majorana neutrinos. The challenges and prospects in the extension and application of beyond-mean-field approaches for <span><math><mrow><mn>0</mn><mi>ν</mi><mi>β</mi><mi>β</mi></mrow></math></span> decay are discussed.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3451557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Coupled-channels calculations for nuclear reactions: From exotic nuclei to superheavy elements 核反应的耦合通道计算:从外来核到超重元素
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-07-01 DOI: 10.1016/j.ppnp.2022.103951
K. Hagino , K. Ogata , A.M. Moro
{"title":"Coupled-channels calculations for nuclear reactions: From exotic nuclei to superheavy elements","authors":"K. Hagino ,&nbsp;K. Ogata ,&nbsp;A.M. Moro","doi":"10.1016/j.ppnp.2022.103951","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103951","url":null,"abstract":"<div><p><span>Atomic nuclei are composite systems, and they may be dynamically excited during nuclear reactions. Such excitations are not only relevant to inelastic scattering but they also affect other reaction processes such as elastic scattering and fusion. The coupled-channels approach is a framework which can describe these reaction processes in a unified manner. It expands the total wave function of the system in terms of the ground and excited states of the colliding nuclei, and solves the coupled Schrödinger equations to obtain the </span><span><math><mi>S</mi></math></span><span><span>-matrix, from which several cross sections can be constructed. This approach has been a standard tool to analyze experimental data for nuclear reactions. In this paper, we review the present status and the recent developments of the coupled-channels approach. This includes the microscopic coupled-channels method and its application to cluster physics, the continuum discretized coupled-channels (CDCC) method for breakup reactions, the semi-microscopic approach to heavy-ion subbarrier fusion reactions, the channel coupling effects on </span>nuclear astrophysics and syntheses of superheavy elements, and inclusive breakup and incomplete fusion reactions of weakly-bound nuclei.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1869836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Transport model comparison studies of intermediate-energy heavy-ion collisions 中能量重离子碰撞输运模型比较研究
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-07-01 DOI: 10.1016/j.ppnp.2022.103962
Hermann Wolter , Maria Colonna , Dan Cozma , Pawel Danielewicz , Che Ming Ko , Rohit Kumar , Akira Ono , ManYee Betty Tsang , Jun Xu , Ying-Xun Zhang , Elena Bratkovskaya , Zhao-Qing Feng , Theodoros Gaitanos , Arnaud Le Fèvre , Natsumi Ikeno , Youngman Kim , Swagata Mallik , Paolo Napolitani , Dmytro Oliinychenko , Tatsuhiko Ogawa , Wen-Jie Xie
{"title":"Transport model comparison studies of intermediate-energy heavy-ion collisions","authors":"Hermann Wolter ,&nbsp;Maria Colonna ,&nbsp;Dan Cozma ,&nbsp;Pawel Danielewicz ,&nbsp;Che Ming Ko ,&nbsp;Rohit Kumar ,&nbsp;Akira Ono ,&nbsp;ManYee Betty Tsang ,&nbsp;Jun Xu ,&nbsp;Ying-Xun Zhang ,&nbsp;Elena Bratkovskaya ,&nbsp;Zhao-Qing Feng ,&nbsp;Theodoros Gaitanos ,&nbsp;Arnaud Le Fèvre ,&nbsp;Natsumi Ikeno ,&nbsp;Youngman Kim ,&nbsp;Swagata Mallik ,&nbsp;Paolo Napolitani ,&nbsp;Dmytro Oliinychenko ,&nbsp;Tatsuhiko Ogawa ,&nbsp;Wen-Jie Xie","doi":"10.1016/j.ppnp.2022.103962","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103962","url":null,"abstract":"<div><p><span><span>Transport models are the main method to obtain physics information on the nuclear </span>equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions in reaching consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed with various participating codes. These included both calculations of nuclear matter in a box with </span>periodic boundary conditions<span>, which test separately selected ingredients of a transport code, and more realistic calculations of heavy-ion collisions. Over the years, six studies have been performed within this project. In this intermediate review, we summarize and discuss the present status of the project. We also provide condensed descriptions of the 26 participating codes, which contributed to some part of the project. These include the major codes in use today. After a compact description of the underlying transport approaches, we review the main results of the studies completed so far. They show, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann–Uehling–Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. However, when the codes were compared in full heavy-ion collisions using different physical models, as recently for pion production, they still yielded substantially different results. This calls for further comparisons of heavy-ion collisions with controlled models and of box comparisons of important ingredients, like momentum-dependent fields, which are currently underway. Our evaluation studies often indicate improved strategies in performing transport simulations and thus can provide guidance to code developers. Results of transport simulations of heavy-ion collisions from a given code will have more significance if the code can be validated against benchmark calculations such as the ones summarized in this review.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3270355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 42
Antiprotonic bound systems 反质子束缚系统
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-07-01 DOI: 10.1016/j.ppnp.2022.103964
M. Doser
{"title":"Antiprotonic bound systems","authors":"M. Doser","doi":"10.1016/j.ppnp.2022.103964","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103964","url":null,"abstract":"<div><p>A wide range of exotic bound systems incorporating antiprotons (atoms, atomic ions, molecules or molecular ions) can be formed, in many cases simply by replacing at least one electron of a matter system by an antiproton. A number of these systems have been studied over decades, while others (in particular antihydrogen) have only recently been the object of precision measurements, and a much larger set have not yet been explored. This review focuses on the physics topics that these exotic systems allow to investigate, and that range from tests of fundamental symmetries to investigating the strong and electromagnetic interactions to probing nuclear models in nuclei far from the line of stability.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3270356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Search for the QCD critical point in high energy nuclear collisions 寻找高能核碰撞中的QCD临界点
IF 9.6 2区 物理与天体物理
Progress in Particle and Nuclear Physics Pub Date : 2022-07-01 DOI: 10.1016/j.ppnp.2022.103960
A. Pandav, D. Mallick, B. Mohanty
{"title":"Search for the QCD critical point in high energy nuclear collisions","authors":"A. Pandav,&nbsp;D. Mallick,&nbsp;B. Mohanty","doi":"10.1016/j.ppnp.2022.103960","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.103960","url":null,"abstract":"<div><p><span>QCD<span> critical point is a landmark region in the QCD phase diagram outlined by temperature as a function of </span></span>baryon<span> chemical potential. To the right of this second-order phase transition point, one expects first order quark–hadron phase transition boundary, towards the left a crossover region, top of it lies the quark–gluon plasma phase and below it the hadronic phase. Hence locating the QCD critical point through relativistic heavy-ion collision experiments is an active area of research. Cumulants of conserved quantities in strong interaction, such as net-baryon, net-charge, and net-strangeness, are suggested to be sensitive to the physics of QCD critical point and are therefore useful observables in the study of the phase transition between quark–gluon plasma and hadronic matter. We review the experimental status of the search for the QCD critical point via the measurements of cumulants of net-particle distributions in heavy-ion collisions. We discuss various experimental challenges and associated corrections in such fluctuation measurements. We also comment on the physics implications of the measurements by comparing them with theoretical calculations. This is followed by a discussion on future experiments and measurements related to high baryonic density QCD matter.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":9.6,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3451558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信