{"title":"核心坍缩超新星引擎中的原子核","authors":"S. Furusawa , H. Nagakura","doi":"10.1016/j.ppnp.2022.104018","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Herein, we review the nuclear equations of state (EOSs) and the constituent nuclei of core-collapse supernovae (CCSNe) and their roles in CCSN simulations. Various nuclei such as </span>deuterons<span>, iron, and extremely neutron-rich nuclei compose in the central engines of CCSNe. The center of a collapsing core is dominated by neutron-rich heavy nuclei prior to the occurrence of core bounce. Their </span></span>weak interactions<span><span><span> significantly affect the neutrino emission and the size of the produced proto-neutron star. After a core bounce, heavy nuclei are dissolved to protons, neutrons, and light nuclei between the expanding shock wave and the newly formed neutron star (NS). Some of the key components in determining the shock-wave dynamics and </span>supernova explosion of outer envelopes are neutrino interactions of </span>nucleons and light nuclei such as deuterons. An EOS provides the relations between thermodynamical properties and the nuclear composition, and is needed to simulate this explosion. Further investigations on uniform and non-uniform nuclear matter are needed to improve the understanding of the mechanism of CCSNe and the properties of supernova nuclei. The knowledge of the EOS for uniform nuclear matter is being continually improved by a combination of microscopic calculations, terrestrial experiments, and NS observations. With reference to various nuclear experiments and current theories, the finite temperature effects on heavy nuclei, formation of light nuclei in dilute nuclear matter, and transition to uniform nuclear matter should be improved in the model of the EOS for non-uniform nuclear matter.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"129 ","pages":"Article 104018"},"PeriodicalIF":14.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nuclei in core-collapse supernovae engine\",\"authors\":\"S. Furusawa , H. Nagakura\",\"doi\":\"10.1016/j.ppnp.2022.104018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Herein, we review the nuclear equations of state (EOSs) and the constituent nuclei of core-collapse supernovae (CCSNe) and their roles in CCSN simulations. Various nuclei such as </span>deuterons<span>, iron, and extremely neutron-rich nuclei compose in the central engines of CCSNe. The center of a collapsing core is dominated by neutron-rich heavy nuclei prior to the occurrence of core bounce. Their </span></span>weak interactions<span><span><span> significantly affect the neutrino emission and the size of the produced proto-neutron star. After a core bounce, heavy nuclei are dissolved to protons, neutrons, and light nuclei between the expanding shock wave and the newly formed neutron star (NS). Some of the key components in determining the shock-wave dynamics and </span>supernova explosion of outer envelopes are neutrino interactions of </span>nucleons and light nuclei such as deuterons. An EOS provides the relations between thermodynamical properties and the nuclear composition, and is needed to simulate this explosion. Further investigations on uniform and non-uniform nuclear matter are needed to improve the understanding of the mechanism of CCSNe and the properties of supernova nuclei. The knowledge of the EOS for uniform nuclear matter is being continually improved by a combination of microscopic calculations, terrestrial experiments, and NS observations. With reference to various nuclear experiments and current theories, the finite temperature effects on heavy nuclei, formation of light nuclei in dilute nuclear matter, and transition to uniform nuclear matter should be improved in the model of the EOS for non-uniform nuclear matter.</span></p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"129 \",\"pages\":\"Article 104018\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014664102200076X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014664102200076X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Herein, we review the nuclear equations of state (EOSs) and the constituent nuclei of core-collapse supernovae (CCSNe) and their roles in CCSN simulations. Various nuclei such as deuterons, iron, and extremely neutron-rich nuclei compose in the central engines of CCSNe. The center of a collapsing core is dominated by neutron-rich heavy nuclei prior to the occurrence of core bounce. Their weak interactions significantly affect the neutrino emission and the size of the produced proto-neutron star. After a core bounce, heavy nuclei are dissolved to protons, neutrons, and light nuclei between the expanding shock wave and the newly formed neutron star (NS). Some of the key components in determining the shock-wave dynamics and supernova explosion of outer envelopes are neutrino interactions of nucleons and light nuclei such as deuterons. An EOS provides the relations between thermodynamical properties and the nuclear composition, and is needed to simulate this explosion. Further investigations on uniform and non-uniform nuclear matter are needed to improve the understanding of the mechanism of CCSNe and the properties of supernova nuclei. The knowledge of the EOS for uniform nuclear matter is being continually improved by a combination of microscopic calculations, terrestrial experiments, and NS observations. With reference to various nuclear experiments and current theories, the finite temperature effects on heavy nuclei, formation of light nuclei in dilute nuclear matter, and transition to uniform nuclear matter should be improved in the model of the EOS for non-uniform nuclear matter.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.