2017 IEEE International Electron Devices Meeting (IEDM)最新文献

筛选
英文 中文
Nanofluidics for cell and drug delivery 用于细胞和药物输送的纳米流体
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268529
N. Di Trani, A. Grattoni, M. Ferrari
{"title":"Nanofluidics for cell and drug delivery","authors":"N. Di Trani, A. Grattoni, M. Ferrari","doi":"10.1109/IEDM.2017.8268529","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268529","url":null,"abstract":"Management of chronic pathologies requires the development of novel strategies for the delivery of drugs and cell therapies, ad hoc. We have developed implantable micronanofluidic-based platforms that leverage molecular nanoconfinement for the controlled administration of drugs and transplantation of cells. These rely on silicon nanofabricated membranes and 3D-printed polymeric architectures that afford long term function in vivo without complex pumping mechanisms or actuation. In this work, we present our recent advances in zero-order drug delivery implants, remotely tunable delivery devices, and subcutaneous encapsulations for endocrine cells transplantation.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133328320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Progress and future challenges of SiC power devices and process technology SiC功率器件和工艺技术的进展和未来挑战
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268360
T. Kimoto, H. Niwa, N. Kaji, T. Kobayashi, Y. Zhao, S. Mori, M. Aketa
{"title":"Progress and future challenges of SiC power devices and process technology","authors":"T. Kimoto, H. Niwa, N. Kaji, T. Kobayashi, Y. Zhao, S. Mori, M. Aketa","doi":"10.1109/IEDM.2017.8268360","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268360","url":null,"abstract":"Recent progress in SiC device physics and development of power devices in the authors' group is reviewed. The impact ionization coefficients in the wide temperature range were determined, which enables accurate device simulation. 13 kV SiC pin diodes with a very low differential on-resistance of 1.4 mΩ.cm2 and 11 kV SiC epitaxial MPS diodes are presented. A mobility-limiting factor in SiC MOSFETs is discussed, and 3 kV reverse-blocking MOSFETs are demonstrated.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133452618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Perspective of negative capacitance FinFETs investigated by transient TCAD simulation 瞬态TCAD仿真研究负电容finfet的前景
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268394
H. Ota, K. Fukuda, T. Ikegami, J. Hattori, H. Asai, S. Migita, A. Toriumi
{"title":"Perspective of negative capacitance FinFETs investigated by transient TCAD simulation","authors":"H. Ota, K. Fukuda, T. Ikegami, J. Hattori, H. Asai, S. Migita, A. Toriumi","doi":"10.1109/IEDM.2017.8268394","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268394","url":null,"abstract":"Stability and instability of the negative capacitance (NC) states in metal (M) / ferroelectric (F) /M /insulator (I) /semiconductor (S) structures are rigorously studied using a newly developed transient TCAD simulation, in which time-dependent Landau-Khalatnikov (LK) equation can be considered. Our transient analysis reveals that NC becomes unstable due to formation of the inversion layer and gives rise to hysteresis in the NC-state, which cannot be simulated by the steady simulation. We propose a novel FinFET, in which the F-layer is located at the gate contact holes and exhibit a design guideline to avoid the instability of the NC-state using experimentally obtained ferroelectric parameters for (Hf, Zr)O2.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131944568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Benchmarking of monolithic 3D integrated MX2 FETs with Si FinFETs 单片3D集成MX2 fet与Si finfet的基准测试
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268336
T. Agarwal, Á. Szabó, M. Bardon, B. Sorée, I. Radu, P. Raghavan, M. Luisier, W. Dehaene, M. Heyns
{"title":"Benchmarking of monolithic 3D integrated MX2 FETs with Si FinFETs","authors":"T. Agarwal, Á. Szabó, M. Bardon, B. Sorée, I. Radu, P. Raghavan, M. Luisier, W. Dehaene, M. Heyns","doi":"10.1109/IEDM.2017.8268336","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268336","url":null,"abstract":"In this paper, monolayer transition metal dichalcogenide (MX2) FETs are benchmarked with Si FinFET using energy-delay as figure-of-merits and a physical compact model. The model is validated with the help of both atomistic simulations and experimental data for different materials, without the use of any fitting parameter. Single-gate (SG) and double-gate (DG) MX2 FETs are compared from ON current, device capacitance and energy-delay perspective. DG MX2 FETs perform 25–30% faster than SG MX2 FETs for the same energy consumption in case of dominating wire load. WS2 DG FET shows both better energy and speed among chosen MX2 materials. However, in comparison to FinFET, WS2 DG FETs are shown to be ∼ 35% slower, but more energy efficient. Therefore, to match FinFET's performance with MX2 FETs, monolithic 3D integrated MX2 SG and DG FETs are explored. It is shown that 3–5 stacked WS2 DG FETs are needed to meet N3 FinFET performance.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132046978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Rapid antibiotic susceptibility testing system: Life saving bioMEMS devices 快速抗生素药敏检测系统:拯救生命的bioMEMS设备
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268364
H. Y. Jeong, E.-G. Kim, S. Han, G. Y. Lee, B. Jin, T. Lim, H. C. Kim, T. S. Kim, D. Y. Kim, S. Kwon
{"title":"Rapid antibiotic susceptibility testing system: Life saving bioMEMS devices","authors":"H. Y. Jeong, E.-G. Kim, S. Han, G. Y. Lee, B. Jin, T. Lim, H. C. Kim, T. S. Kim, D. Y. Kim, S. Kwon","doi":"10.1109/IEDM.2017.8268364","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268364","url":null,"abstract":"For the prompt prescription of patients suffering from infectious diseases such as tuberculosis or bloodstream infection, a rapid antimicrobial susceptibility test (RAST) is highly necessary. This paper describe rapid antibiotic susceptibility test system composed of biochips and automated expert system, which can determine the antibiotic susceptibility of bacteria and mycobacteria derived from various parts of body. With RAST, antibiotic susceptibility was available in six hours, which was conventionally taking more than two days. Device design consideration, clinical verification, commercialization, and application of RAST system to infectious diseases are reviewed.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121358239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pixel/DRAM/logic 3-layer stacked CMOS image sensor technology 像素/DRAM/逻辑3层堆叠CMOS图像传感器技术
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268317
H. Tsugawa, H. Takahashi, R. Nakamura, T. Umebayashi, T. Ogita, H. Okano, K. Iwase, H. Kawashima, T. Yamasaki, D. Yoneyama, J. Hashizume, T. Nakajima, K. Murata, Y. Kanaishi, K. Ikeda, K. Tatani, T. Nagano, H. Nakayama, T. Haruta, T. Nomoto
{"title":"Pixel/DRAM/logic 3-layer stacked CMOS image sensor technology","authors":"H. Tsugawa, H. Takahashi, R. Nakamura, T. Umebayashi, T. Ogita, H. Okano, K. Iwase, H. Kawashima, T. Yamasaki, D. Yoneyama, J. Hashizume, T. Nakajima, K. Murata, Y. Kanaishi, K. Ikeda, K. Tatani, T. Nagano, H. Nakayama, T. Haruta, T. Nomoto","doi":"10.1109/IEDM.2017.8268317","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268317","url":null,"abstract":"We developed a CMOS image sensor (CIS) chip, which is stacked pixel/DRAM/logic. In this CIS chip, three Si substrates are bonded together, and each substrate is electrically connected by two-stacked through-silica vias (TSVs) through the CIS or dynamic random access memory (DRAM). We obtained low resistance, low leakage current, and high reliability characteristics of these TSVs. Connecting metal with TSVs through DRAM can be used as low resistance wiring for a power supply. The Si substrate of the DRAM can be thinned to 3 pm, and its memory retention and operation characteristics are sufficient for specifications after thinning. With this stacked CIS chip, it is possible to achieve less rolling shutter distortion and produce super slow motion video.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129374762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
A single magnetic-tunnel-junction stochastic computing unit 单磁隧道结随机计算单元
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268504
Yang Lv, Jianping Wang
{"title":"A single magnetic-tunnel-junction stochastic computing unit","authors":"Yang Lv, Jianping Wang","doi":"10.1109/IEDM.2017.8268504","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268504","url":null,"abstract":"We propose and experimentally demonstrate stochastic computing (SC) with a single magnetic tunnel junction (MJT), exploiting the physical properties and behaviors of the device. Pulse amplitude, bias field, bias current, and pulse width are used as inputs; the output is the switching probability. A single MJT can implement the operations of addition and multiplication. The scheme benefits from the high energy efficiency of an MTJ operated by spintransfer torque (STT), or other future switching mechanisms. Stochastic operations naturally provide high error tolerance, low complexity and low area cost.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128526918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
A back-illuminated 3D-stacked single-photon avalanche diode in 45nm CMOS technology 45纳米CMOS技术的背照3d堆叠单光子雪崩二极管
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268405
Myung-Jae Lee, A. Ximenes, Preethi Padmanabhan, Tzu-Jui Wang, Kuo-Chin Huang, Y. Yamashita, D. Yaung, E. Charbon
{"title":"A back-illuminated 3D-stacked single-photon avalanche diode in 45nm CMOS technology","authors":"Myung-Jae Lee, A. Ximenes, Preethi Padmanabhan, Tzu-Jui Wang, Kuo-Chin Huang, Y. Yamashita, D. Yaung, E. Charbon","doi":"10.1109/IEDM.2017.8268405","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268405","url":null,"abstract":"We report on the world's first back-illuminated 3D-stacked single-photon avalanche diode (SPAD) in 45nm CMOS technology. This SPAD achieves a dark count rate of 55.4cps/μm2, a maximum photon detection probability of 31.8% at 600nm, over 5% in the 420–920nm wavelength range, and timing jitter of 107.7ps at 2.5V excess bias voltage and room temperature. To the best of our knowledge, these are the best results ever reported for any back-illuminated 3D-stacked SPAD technology.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114854661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Random sparse adaptation for accurate inference with inaccurate multi-level RRAM arrays 随机稀疏自适应对不精确的多级随机随机存储器阵列进行精确推断
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268339
Abinash Mohanty, Xiaocong Du, Pai-Yu Chen, Jae-sun Seo, Shimeng Yu, Yu Cao
{"title":"Random sparse adaptation for accurate inference with inaccurate multi-level RRAM arrays","authors":"Abinash Mohanty, Xiaocong Du, Pai-Yu Chen, Jae-sun Seo, Shimeng Yu, Yu Cao","doi":"10.1109/IEDM.2017.8268339","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268339","url":null,"abstract":"An array of multi-level resistive memory devices (RRAMs) can speed up the computation of deep learning algorithms. However, when a pre-trained model is programmed to a real RRAM array for inference, its accuracy degrades due to many non-idealities, such as variations, quantization error, and stuck-at faults. A conventional solution involves multiple read-verify-write (R-V-W) for each RRAM cell, costing a long time because of the slow Write speed and cell-by-cell compensation. In this work, we propose a fundamentally new approach to overcome this issue: random sparse adaptation (RSA) after the model is transferred to the RRAM array. By randomly selecting a small portion of model parameters and mapping them to on-chip memory for further training, we demonstrate an efficient and fast method to recover the accuracy: in CNNs for MNIST and CIFAR-10, ∼5% of model parameters is sufficient for RSA even under excessive RRAM variations. As the back-propagation in training is only applied to RSA cells and there is no need of any Write operation on RRAM, the proposed RSA achieves 10–100X acceleration compared to R-V-W. Therefore, this hybrid solution with a large, inaccurate RRAM array and a small, accurate on-chip memory array promises both area efficiency and inference accuracy.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126034625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects 一种10nm高性能低功耗CMOS技术,具有第三代FinFET晶体管,自对准四面图,主动栅极接触和钴本地互连
2017 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2017-12-01 DOI: 10.1109/IEDM.2017.8268472
C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy, C. Pelto, L. Pipes, I. Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. D. Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. Amour, C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, A. Yeoh
{"title":"A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects","authors":"C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy, C. Pelto, L. Pipes, I. Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. D. Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. Amour, C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, A. Yeoh","doi":"10.1109/IEDM.2017.8268472","DOIUrl":"https://doi.org/10.1109/IEDM.2017.8268472","url":null,"abstract":"A 10nm logic technology using 3rd-generation FinFET transistors with Self-Aligned Quad Patterning (SAQP) for critical patterning layers, and cobalt local interconnects at three local interconnect layers is described. For high density, a novel self-aligned contact over active gate process and elimination of the dummy gate at cell boundaries are introduced. The transistors feature rectangular fins with 7nm fin width and 46nm fin height, 5th generation high-k metal gate, and 7th-generation strained silicon. Four or six workfunction metal stacks are used to enable undoped fins for low Vt, standard Vt and optional high Vt devices. Interconnects feature 12 metal layers with ultra-low-k dielectrics throughout the interconnect stack. The highest drive currents with the highest cell densities are reported for a 10nm technology.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121679631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 267
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信