Yusheng Zheng , Yunhong Che , Xiaosong Hu , Xin Sui , Daniel-Ioan Stroe , Remus Teodorescu
{"title":"Thermal state monitoring of lithium-ion batteries: Progress, challenges, and opportunities","authors":"Yusheng Zheng , Yunhong Che , Xiaosong Hu , Xin Sui , Daniel-Ioan Stroe , Remus Teodorescu","doi":"10.1016/j.pecs.2023.101120","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101120","url":null,"abstract":"<div><p>Transportation electrification is a promising solution to meet the ever-rising energy demand and realize sustainable development. Lithium-ion batteries, being the most predominant energy storage devices, directly affect the safety, comfort, driving range, and reliability of many electric mobilities. Nevertheless, thermal-related issues of batteries such as potential thermal runaway, performance degradation at low temperatures, and accelerated aging still hinder the wider adoption of electric mobilities. To ensure safe, efficient, and reliable operations of lithium-ion batteries, monitoring their thermal states is critical to safety protection, performance optimization, as well as prognostics, and health management. Given insufficient onboard temperature sensors and their inability to measure battery internal temperature, accurate and timely temperature estimation is of particular importance to thermal state monitoring. Toward this end, this paper provides a comprehensive review of temperature estimation techniques in battery systems regarding their mechanism, framework, and representative studies. The potential metrics used to characterize battery thermal states are discussed in detail at first considering the spatiotemporal attributes of battery temperature, and the strengths and weaknesses of applying such metrics in battery management are also analyzed. Afterward, various temperature estimation methods, including impedance/resistance-based, thermal model-based, and data-driven estimations, are elucidated, analyzed, and compared in terms of their strengths, limitations, and potential improvements. Finally, the key challenges to battery thermal state monitoring in real applications are identified, and future opportunities for removing these barriers are presented and discussed.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"100 ","pages":"Article 101120"},"PeriodicalIF":29.5,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41079485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuesong Li , Shangning Wang , Shangze Yang , Shuyi Qiu , Zhe Sun , David L.S. Hung , Min Xu
{"title":"A review on the recent advances of flash boiling atomization and combustion applications","authors":"Xuesong Li , Shangning Wang , Shangze Yang , Shuyi Qiu , Zhe Sun , David L.S. Hung , Min Xu","doi":"10.1016/j.pecs.2023.101119","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101119","url":null,"abstract":"<div><p>Flash boiling atomization is a promising approach to enhance spray atomization with internal energy as the driving force as well. Past investigations primarily focused on the morphologies and macroscopic characteristics of flash boiling sprays. Recently, with the advances in experimental techniques and the need in developing cleaner and more efficient combustion systems, thorough and detailed analyses were carried out on flash boiling atomization. This review article will introduce and discuss recent flash boiling advances using experimental approaches. This work will first discuss the gas-liquid, two-phase features in the nozzle and the impacts on the primary breakup of flash boiling sprays. Then, the characteristics of the external flash boiling spray plumes will be discussed with a dense vapor and sparse droplet feature. Furthermore, practical issues in adopting flash boiling atomization such as injector tip-wetting and spray wall impingement effects are covered in the flash boiling regime. Finally, practical applications of flash boiling atomization in combustors such as reciprocating internal combustion engines are presented. It is aimed that this review can provide an up-to-date summary of the current state-of-the-art of flash boiling atomizations and shed light on the future development of active flashing atomization techniques.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"100 ","pages":"Article 101119"},"PeriodicalIF":29.5,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41079502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spark ignition transitions in premixed turbulent combustion","authors":"Shenqyang (Steven) Shy","doi":"10.1016/j.pecs.2023.101099","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101099","url":null,"abstract":"<div><p><span>Recent discoveries and developments on the dynamic process of premixed turbulent spark ignition are reviewed. The focus here is on the variation of turbulent minimum ignition energies (MIE</span><sub>T</sub>) against laminar MIE (MIE<sub>L</sub><span>) over a wide range of r.m.s. turbulence fluctuation velocity (</span><em>u</em>ʹ) alongside effects of the spark gap between electrodes, Lewis number, and some other parameters on MIE. Two distinguishable spark ignition transitions are discussed. (1) A monotonic <em>MIE transition</em>, where MIE<sub>L</sub> sets the lower bound, marks a critical <em>u</em>ʹ<sub>c</sub> between linear and exponential increase in MIE<sub>T</sub> with <em>u</em>ʹ increased. (2) A non-monotonic <em>MIE transition</em>, where the lower bound is to be set by a MIE<sub>T</sub> at some <em>u</em>ʹ<sub>c</sub>, stems from a great influence of Lewis number and spark gap despite turbulence. At sufficiently large Lewis number >> 1 and small spark gap (typically less than 1 mm), turbulence facilitated ignition (<em>TFI</em>), where MIE<sub>T</sub> < MIE<sub>L</sub>, occurs; then MIE<sub>T</sub> increases rapidly at larger <em>u</em>ʹ > <em>u</em>ʹ<sub>c</sub><span> because turbulence re-asserts its dominating role. Both phenomena are explained by the coupling effects of differential diffusion, heat losses to electrodes, and turbulence on the spark kernel. In particular, the ratio of small-scale turbulence diffusivity<span><span> to reaction zone thermal diffusivity, a reaction zone </span>Péclet number, captures the similarity of monotonic </span></span><em>MIE transition</em><span>, regardless of different ignition sources (conventional electrodes </span><em>versus</em> laser), turbulent flows, pressure, and fuel types. Furthermore, <em>TFI</em> does and/or does not occur when conventional spark is replaced by nanosecond-repetitively-pulsed-discharge and/or laser spark. The latter is attributed to the third lobe formation of laser kernel with some negative curvature segments that enhance reaction rate through differential diffusion, where MIE<sub>L</sub> < MIE<sub>T</sub> (no <em>TFI</em>). Finally, the implications of <em>MIE transitions</em><span> relevant to lean-burn spark ignition engines are briefly mentioned, and future studies are suggested.</span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"98 ","pages":"Article 101099"},"PeriodicalIF":29.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2622294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbons as low-platinum catalyst supports and non-noble catalysts for polymer electrolyte fuel cells","authors":"Yizhe Chen, Shiming Zhang, Joey Chung-Yen Jung, Jiujun Zhang","doi":"10.1016/j.pecs.2023.101101","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101101","url":null,"abstract":"<div><p><span>Polymer electrolyte fuel cells<span>, including acidic proton exchange membrane fuel cells (PEMFCs) and alkaline anion exchange membrane<span> fuel cells (AEMFCs), are the types of the most promising high-efficiency techniques for conversion hydrogen energy to electricity energy. However, the catalysts’ insufficient activity and stability toward </span></span></span>oxygen reduction reaction<span> (ORR) at the cathodes of these devices are still the important constraints to their performance. So far, carbon black supported platinum (Pt/C) and its alloys are still the most practical and best-performing type of catalysts. However, the scarcity of Pt is highly challenging and the high price of commercial catalyst will continue to drive up the cost of both PEMFCs and AEMFCs. Moreover, the traditional carbon black support is susceptible to corrosion especially under electrochemical operation, itself inactive for ORR and weakly binding with Pt-based nanoparticles<span><span><span>. In this review, the advanced carbons synthesized by various template methods, including hard-template, soft-template, self-template and combined-template, are systematically evaluated as low-Pt catalyst supports and non-noble catalysts. For the templates-induced carbon-based catalysts, this review presents a comprehensive overview on the carbon supported low-Pt catalysts from aspect of composition, size and shape control as well as the non-noble carbon catalysts such as transition metal-nitrogen-carbons, metal-free carbons and defective carbons. Furthermore, this review also summarizes the applications of low/non-Pt carbon-based catalysts base on the template-induce advanced carbons at the cathodes of PEMFCs and AEMFCs. Overall, the templates-induced carbons can show some perfect attributes including ordered morphology, reasonable pore structure, high conductivity and surface area, </span>good corrosion resistance and mechanical property, as well as strong metal–support interaction. All of these features are of particular importance for the construction of high-performance carbon-based ORR catalysts. However, some drawbacks mainly involve the removal of templates, maintenance of morphological structure, and demetalation. To address these issues, this review also summarizes some effective strategies, such as employing the easily removed hard/soft-templates, developing the advantageous self-templates, enhancing the metal–support interaction by formation of chemical binds, etc. In conclusion, this review provides an effective guide for the construction of template-induced advanced carbons and carbon-based low/non-Pt catalysts with analysis of technical challenges in the development of ORR </span>electrocatalysts for both PEMFCs and AEMFCs, and also proposes several future research directions for overcoming the challenges towards practical applications.</span></span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"98 ","pages":"Article 101101"},"PeriodicalIF":29.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use of hydrogen in dual-fuel diesel engines","authors":"Seyyed Hassan Hosseini , Athanasios Tsolakis , Avinash Alagumalai , Omid Mahian , Su Shiung Lam , Junting Pan , Wanxi Peng , Meisam Tabatabaei , Mortaza Aghbashlo","doi":"10.1016/j.pecs.2023.101100","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101100","url":null,"abstract":"<div><p><span>Hydrogen is a promising future energy carrier due to its potential for production from renewable resources<span><span><span>. It can be used in existing compression ignition </span>diesel engines in a dual-fuel mode with little modification. Hydrogen's unique physiochemical properties, such as higher </span>calorific value<span>, flame speed, and diffusivity<span> in air, can effectively improve the performance and combustion characteristics of diesel engines. As a carbon-free fuel, hydrogen can also mitigate harmful emissions from diesel engines, including carbon monoxide, unburned hydrocarbons, </span></span></span></span>particulate matter<span>, soot, and smoke. However, hydrogen-fueled diesel engines suffer from knocking combustion and higher nitrogen oxide<span> emissions. This paper comprehensively reviews the effects of hydrogen or hydrogen-containing gaseous fuels (i.e., syngas and hydroxy gas) on the behavior of dual-fuel diesel engines. The opportunities and limitations of using hydrogen in diesel engines are discussed thoroughly. It is not possible for hydrogen to improve all the performance indicators and exhaust emissions of diesel engines simultaneously. However, reformulating pilot fuel by additives, blending hydrogen with other gaseous fuels, adjusting engine parameters, optimizing operating conditions, modifying engine structure, using hydroxy gas, and employing exhaust gas catalysts could pave the way for realizing safe, efficient, and economical hydrogen-fueled diesel engines. Future work should focus on preventing knocking combustion and nitrogen oxide emissions in hydrogen-fueled diesel engines by adjusting the hydrogen inclusion rate in real time.</span></span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"98 ","pages":"Article 101100"},"PeriodicalIF":29.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review on modelling methods, tools and service of integrated energy systems in China","authors":"Nianyuan Wu, Fuzheng Zhang, Jiangjiang Wang, Xiaonan Wang, Jianzhong Wu, J. Huang, Jiawei Tan, Rui Jing, Jian Lin, Shan Xie, Yingru Zhao","doi":"10.1088/2516-1083/acef9e","DOIUrl":"https://doi.org/10.1088/2516-1083/acef9e","url":null,"abstract":"An integrated energy system (IES) is responsible for aggregating various energy carriers, such as electricity, gas, heating, and cooling, with a focus on integrating these components to provide an efficient, low-carbon, and reliable energy supply. This paper aims to review the modeling methods, tools, and service modes of IES in China to evaluate opportunities for improving current practices. The models reviewed in this paper are classified as demand forecasting or energy system optimization models based on their modeling progress. Additionally, the main components involved in the IES modeling process are presented, and typical domestic tools utilized in the modeling processes are discussed. Finally, based on a review of several demonstration projects of IES, future development directions of IES are summarized as the integration of data-driven and engineering models, improvements in policies and mechanisms, the establishment of regional energy management centers, and the promotion of new energy equipment.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"2 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81092883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gontzal Lezcano , Idoia Hita , Yerraya Attada , Anissa Bendjeriou-Sedjerari , Ali H. Jawad , Alberto Lozano-Ballesteros , Miao Sun , Noor Al-Mana , Mohammed AlAmer , Eman Z. Albaher , Pedro Castaño
{"title":"Selective ring-opening of polycyclic to monocyclic aromatics: A data- and technology-oriented critical review","authors":"Gontzal Lezcano , Idoia Hita , Yerraya Attada , Anissa Bendjeriou-Sedjerari , Ali H. Jawad , Alberto Lozano-Ballesteros , Miao Sun , Noor Al-Mana , Mohammed AlAmer , Eman Z. Albaher , Pedro Castaño","doi":"10.1016/j.pecs.2023.101110","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101110","url":null,"abstract":"<div><p>Polyaromatic hydrocarbons, polycyclic aromatics or polyarenes are a major (by-)product fraction of multiple classical, waste, and bio-refinery operations. They have an extremely negative environmental impact, a minimal market, and a lowering demand. Parallelly, lowly alkylated single ring arenes or monoaromatics (benzene, toluene, and xylenes, the so-called BTX fraction) are highly demanded due to their applications as chemicals or fuels. Herein, we review the status of applied polyaromatic selective ring-opening (SRO) by hydrocracking into monoaromatics. This review addresses the involved mechanisms, applicable catalysts, and reported modeling approaches for SRO. Applying the multivariate analysis to the results reported in the literature using model molecules, we showcase the limitations for extrapolating the obtained knowledge to realistic polyaromatic stream processing. We also provide a statistical evaluation of the suitability of several polyaromatic streams for their SRO processing and assess the markets, usage, and production routes for monocyclic aromatics. Finally, the technologies of these processes are also evaluated and compared, while the most promising one is discussed further based on process simulations and a techno-economic assessment.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"99 ","pages":"Article 101110"},"PeriodicalIF":29.5,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2822799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Particles in a turbulent gas: Diffusion, bias, modulation and collisions","authors":"Eric Loth","doi":"10.1016/j.pecs.2023.101094","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101094","url":null,"abstract":"<div><p><span><span><span><span>Turbulence is an effective way to spread particles and drops in a fluid, which is critical for many energy systems, ranging from carbon-based power-production to spray cooling for </span>renewable energy storage. Combining the intricacies of turbulence with the complexities of particle motion has led to numerous advances, especially in the last two decades in terms of turbulent bias, and turbulence modulations, as well as experimental confirmation of previous theories regarding </span>turbulent diffusion<span><span> and turbulent particle collisions. In this review, the fundamental features of turbulence are related to key </span>Stokes numbers that describe one-way coupling (influence of turbulence on particle motion). This includes turbulent </span></span>diffusivity for a range of inertias and drift parameters, as well as new work that describes the kinetic energy of </span>particle velocity and of particle relative velocity. Turbulent biases are then reviewed including non-linear drag bias, preferential bias, clustering bias, diffusiophoresis and turbophoresis. Next, recent progress in turbulence modulation and particle collision frequency are discussed. Finally, a generalized flow regimes is presented to summarize the interactions as a function of particle size and particle concentration.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"97 ","pages":"Article 101094"},"PeriodicalIF":29.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3268441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress in beam-down solar concentrating systems","authors":"Evangelos Bellos","doi":"10.1016/j.pecs.2023.101085","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101085","url":null,"abstract":"<div><p>Concentrating solar technologies are promising renewable energy systems<span> for exploiting incident beam solar irradiation<span> with high exergy efficiency values. These systems provide the possibility for producing useful heat at high temperatures that can be utilized by highly efficient power cycles or producing directly solar fuels with receiver reactor technology. In the last years, the concept of beam-down concentrating solar technology gains more and more attention due to a series of advantages associated with this idea. This concept is based on the use of two-stage reflectors for concentrating solar irradiation close to the ground, something that leads to a more compact system with reduced height. Furthermore, the high-temperature heat production and the chemical processes take place on the ground and not at a great height, increasing the safety levels of the system. Moreover, this design leads to compact configurations with lower materials use, lower wind loads and without the need to move the receiver for tracking the sun.</span></span></p><p>The objective of this review is to present the recent progress on beam-down solar concentrating technology and to highlight the need for giving attention to this direction. Critical advantages of this technology are demonstrated and the associated limitations are discussed. The emphasis is on the presentation of the different technologies that can be coupled with the beam-down technology. Thermodynamic power cycles (Brayton, Rankine<span><span> and Stirling), photovoltaics, </span>thermochemical processes, as well as other applications are included and discussed. Practically, power production and solar fuels are the major useful outputs that can be generated by beam-down solar concentrating configurations. The reviewed technologies are critically discussed and compared in terms of energy, economic and environmental aspects. Future steps in the field are suggested based on the existing literature.</span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"97 ","pages":"Article 101085"},"PeriodicalIF":29.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhitong Yao , Markus Reinmöller , Nuria Ortuño , Hongxu Zhou , Meiqing Jin , Jie Liu , Rafael Luque
{"title":"Thermochemical conversion of waste printed circuit boards: Thermal behavior, reaction kinetics, pollutant evolution and corresponding controlling strategies","authors":"Zhitong Yao , Markus Reinmöller , Nuria Ortuño , Hongxu Zhou , Meiqing Jin , Jie Liu , Rafael Luque","doi":"10.1016/j.pecs.2023.101086","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101086","url":null,"abstract":"<div><p><span>With the rapid development of the global electronics industry, waste printed circuit boards<span> (WPCBs) has become one of the world's fastest growing waste streams. Exploring an environmentally sound treatment for this abundant and multi-component waste is critical to its sustainable development. This study has been aimed to cover thermochemical conversion of WPCBs (combustion, </span></span>pyrolysis, gasification and hydrothermal process), focusing on thermal behavior, reaction kinetics, pollutant evolution and corresponding controlling strategies, with the aim of promoting circular economic development and building a sustainable future for the electronics industry.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"97 ","pages":"Article 101086"},"PeriodicalIF":29.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2622295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}