Progress in Crystal Growth and Characterization of Materials最新文献

筛选
英文 中文
FIBSIMS: A review of secondary ion mass spectrometry for analytical dual beam focussed ion beam instruments fifisims:用于分析双束聚焦离子束仪器的二次离子质谱分析综述
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2019-02-01 DOI: 10.1016/j.pcrysgrow.2018.10.001
Lex Pillatsch , Fredrik Östlund , Johann Michler
{"title":"FIBSIMS: A review of secondary ion mass spectrometry for analytical dual beam focussed ion beam instruments","authors":"Lex Pillatsch ,&nbsp;Fredrik Östlund ,&nbsp;Johann Michler","doi":"10.1016/j.pcrysgrow.2018.10.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.10.001","url":null,"abstract":"<div><p><span>Secondary ion mass spectrometry (SIMS) is a well-known technique for 3D chemical mapping at the </span>nanoscale<span><span><span>, with detection sensitivity in the range of ppm or even ppb. Energy dispersive X-ray spectroscopy (EDS) is the standard chemical analysis and imaging technique in modern scanning electron microscopes (SEM), and related dual-beam focussed ion beam (FIBSEM) instruments. Contrary to the use of an </span>electron beam, in the past the ion beam in FIBSEMs has predominantly been used for local milling or deposition of material. Here, we review the emerging FIBSIMS technique which exploits the </span>focused ion beam<span> as an analytical probe, providing the capability to perform secondary ion mass spectrometry measurements on FIBSEM instruments: secondary ions, sputtered by the FIB, are collected and selected according to their mass by a mass spectrometer. In this way a complete 3D chemical analysis with high lateral resolution &lt; 50 nm and a depth resolution &lt; 10 nm is attainable.</span></span></p><p><span><span>We first report on the historical developments of both SIMS and FIB techniques and review recent developments in both instruments. We then review the physics of interaction for incident particles using Monte Carlo simulations. Next, the components of modern FIBSIMS instruments, from the primary ion generation in the </span>liquid metal source in the FIB column, the focussing </span>optics<span><span>, the sputtered ion extraction optics, to the different mass spectrometer types are all detailed. The advantages and disadvantages of parallel and serial mass selection in terms of data acquisition and interpretation are highlighted, while the effects of pressure in the FIBSEM, acceleration voltage, ion take-off angles and charge compensation techniques on the analysis results are then discussed. The capabilities of FIBSIMS in terms of sensitivity, lateral and depth resolution and mass resolution are reviewed. Different data acquisition strategies related to dwell time, binning and beam control strategies as well as roughness and edge effects are discussed. Data analysis routines for mass identification based on isotope ratios and molecular fragments are outlined. Application examples are then presented for the fields of thin films, </span>polycrystalline metals, batteries, cultural heritage materials, isotope labelling, and geological materials. Finally, FIBSIMS is compared to EDS, and the potential of the technique for correlative microscopy with other FIBSEM based imaging techniques is discussed.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"65 1","pages":"Pages 1-19"},"PeriodicalIF":5.1,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Mechanism for generating interstitial atoms by thermal stress during silicon crystal growth 硅晶体生长过程中热应力产生间隙原子的机理
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2019-02-01 DOI: 10.1016/j.pcrysgrow.2019.01.001
Takao Abe , Toru Takahashi , Koun Shirai
{"title":"Mechanism for generating interstitial atoms by thermal stress during silicon crystal growth","authors":"Takao Abe ,&nbsp;Toru Takahashi ,&nbsp;Koun Shirai","doi":"10.1016/j.pcrysgrow.2019.01.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2019.01.001","url":null,"abstract":"&lt;div&gt;&lt;p&gt;&lt;span&gt;It has been known that, in growing silicon&lt;span&gt;&lt;span&gt; from melts, vacancies (Vs) predominantly exist in crystals obtained by high-rate growth, while interstitial atoms (Is) predominantly exist in crystals obtained by low-rate growth. To reveal the cause, the &lt;/span&gt;temperature distributions&lt;span&gt;&lt;span&gt; in growing crystal surfaces&lt;span&gt; were measured. From this result, it was presumed that the high-rate growth causes a small temperature gradient between the growth interface and the interior of the crystal; in contrast, the low-rate growth causes a large temperature gradient between the growth interface and the interior of the crystal. However, this presumption is opposite to the commonly-accepted notion in melt growth. In order to experimentally demonstrate that the low-rate growth increases the temperature gradient and consequently generates Is, crystals were filled with vacancies by the high-rate growth, and then the pulling was stopped as the extreme condition of the low-rate growth. Nevertheless, the crystals continued to grow spontaneously after the pulling was stopped. Hence, simultaneously with the pulling-stop, the temperature of the melts was increased to melt the spontaneously grown portions, so that the diameters were restored to sizes at the moment of pulling-stop. Then, the crystals were cooled as the cooling time elapsed, and the temperature gradient in the crystals was increased. By using X-ray topographs before and after oxygen precipitation in combination with a &lt;/span&gt;&lt;/span&gt;minority carrier lifetime distribution, a time-dependent change in the defect type distribution was successfully observed in a three-dimensional manner from the growth interface to the low-temperature portion where the cooling progressed. This result revealed that Vs are uniformly introduced in a grown crystal regardless of the pulling rate as long as the growth continues, and the Vs agglomerate as a void and remain in the crystal, unless recombined with Is. On the other hand, Is are generated only in a region where the temperature gradient is large by low-rate growth. In particular, the generation starts near the peripheral portion in the vicinity of the solid–liquid interface. First, the generated Is are recombined with Vs introduced into the growth interface, so that a recombination region is always formed which is regarded as substantially defect free. Excessively generated Is after the recombination agglomerate and form a dislocation loop region. Unlike conventional Voronkov's &lt;/span&gt;&lt;/span&gt;&lt;/span&gt;diffusion model, Is hardly diffuse over a long distance. Is are generated by re-heating after growth.&lt;/p&gt;&lt;p&gt;[In a steady state, the crystal growth rate is synonymous with the pulling rate. Meanwhile, when an atypical operation is performed, the pulling rate is specifically used.]&lt;/p&gt;&lt;p&gt;This review on point defects formation intends to contribute further silicon crystals development, because electronic devices are aimed to have finer structures, a","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"65 1","pages":"Pages 36-46"},"PeriodicalIF":5.1,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2019.01.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2005504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Metalorganic vapor phase epitaxy of III–V-on-silicon: Experiment and theory iii - v -硅金属有机气相外延:实验与理论
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2018-12-01 DOI: 10.1016/j.pcrysgrow.2018.07.002
Oliver Supplie , Oleksandr Romanyuk , Christian Koppka , Matthias Steidl , Andreas Nägelein , Agnieszka Paszuk , Lars Winterfeld , Anja Dobrich , Peter Kleinschmidt , Erich Runge , Thomas Hannappel
{"title":"Metalorganic vapor phase epitaxy of III–V-on-silicon: Experiment and theory","authors":"Oliver Supplie ,&nbsp;Oleksandr Romanyuk ,&nbsp;Christian Koppka ,&nbsp;Matthias Steidl ,&nbsp;Andreas Nägelein ,&nbsp;Agnieszka Paszuk ,&nbsp;Lars Winterfeld ,&nbsp;Anja Dobrich ,&nbsp;Peter Kleinschmidt ,&nbsp;Erich Runge ,&nbsp;Thomas Hannappel","doi":"10.1016/j.pcrysgrow.2018.07.002","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.07.002","url":null,"abstract":"<div><p><span><span>The integration of III–V semiconductors with Si has been pursued for more than 25 years since it is strongly desired in various high-efficiency applications ranging from microelectronics to energy conversion. In the last decade, there have been tremendous advances in Si preparation in hydrogen-based metalorganic vapor phase epitaxy (MOVPE) environment, III–V nucleation and subsequent heteroepitaxial layer growth. Simultaneously, MOVPE itself took off in its triumphal course in solid state lighting production demonstrating its power as industrially relevant growth technique. Here, we review the recent progress in MOVPE growth of III–V-on-silicon </span>heterostructures, preparation of the involved interfaces and fabrication of devices structures. We focus on a broad range of </span><em>in situ, in system</em> and <em>ex situ</em><span> characterization techniques. We highlight important contributions of density functional theory<span> and kinetic growth simulations to a deeper understanding of growth phenomena and support of the experimental analysis. Besides new device concepts for planar heterostructures and the specific challenges of (001) interfaces, we also cover nano-dimensioned III–V structures, which are preferentially prepared on (111) surfaces and which emerged as veritable candidates for future optoelectronic devices.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 4","pages":"Pages 103-132"},"PeriodicalIF":5.1,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.07.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
Sapphire shaped crystals for waveguiding, sensing and exposure applications 用于波导,传感和曝光应用的蓝宝石形晶体
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2018-12-01 DOI: 10.1016/j.pcrysgrow.2018.10.002
G.M. Katyba , K.I. Zaytsev , I.N. Dolganova , I.A. Shikunova , N.V. Chernomyrdin , S.O. Yurchenko , G.A. Komandin , I.V. Reshetov , V.V. Nesvizhevsky , V.N. Kurlov
{"title":"Sapphire shaped crystals for waveguiding, sensing and exposure applications","authors":"G.M. Katyba ,&nbsp;K.I. Zaytsev ,&nbsp;I.N. Dolganova ,&nbsp;I.A. Shikunova ,&nbsp;N.V. Chernomyrdin ,&nbsp;S.O. Yurchenko ,&nbsp;G.A. Komandin ,&nbsp;I.V. Reshetov ,&nbsp;V.V. Nesvizhevsky ,&nbsp;V.N. Kurlov","doi":"10.1016/j.pcrysgrow.2018.10.002","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.10.002","url":null,"abstract":"<div><p><span>Second half of the XX century was marked by a rapid development of sapphire shaped crystal growth technologies, driven by the demands for fast, low-cost, and technologically reliable methods of producing sapphire crystals of complex shape. Numerous techniques of shaped crystal growth from a melt have been proposed relying on the Stepanov concept of crystal shaping. In this review, we briefly describe the development of growth techniques, with a strong emphasize on those that yield sapphire crystals featuring high volumetric and surface quality. A favorable combination of physical properties of sapphire (superior hardness and tensile strength<span><span>, impressive thermal conductivity and chemical inertness, high melting point and </span>thermal shock resistance<span>, transparency to electromagnetic waves in a wide spectral range) with advantages of shaped crystal growth techniques (primarily, an ability to produce sapphire crystals with a complex geometry of cross-section, along with high volumetric and surface quality) allows fabricating various instruments for waveguiding, sensing, and exposure technologies. We discuss recent developments of high-tech instruments, which are based on sapphire shaped crystals and vigorously employed in biomedical and material sciences, </span></span></span>optics<span> and photonics, nuclear physics and plasma sciences.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 4","pages":"Pages 133-151"},"PeriodicalIF":5.1,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.10.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 63
Basic ammonothermal growth of Gallium Nitride – State of the art, challenges, perspectives 氮化镓的碱性氨热生长-现状,挑战,展望
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2018-09-01 DOI: 10.1016/j.pcrysgrow.2018.05.001
M. Zajac , R. Kucharski , K. Grabianska , A. Gwardys-Bak , A. Puchalski , D. Wasik , E. Litwin-Staszewska , R. Piotrzkowski , J. Z Domagala , M. Bockowski
{"title":"Basic ammonothermal growth of Gallium Nitride – State of the art, challenges, perspectives","authors":"M. Zajac ,&nbsp;R. Kucharski ,&nbsp;K. Grabianska ,&nbsp;A. Gwardys-Bak ,&nbsp;A. Puchalski ,&nbsp;D. Wasik ,&nbsp;E. Litwin-Staszewska ,&nbsp;R. Piotrzkowski ,&nbsp;J. Z Domagala ,&nbsp;M. Bockowski","doi":"10.1016/j.pcrysgrow.2018.05.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.05.001","url":null,"abstract":"<div><p><span>Recent progress in ammonothermal technology of bulk GaN growth in basic environment is presented and discussed in this paper. This method enables growth of two-inch in diameter crystals of outstanding structural properties, with radius of curvature above tens of meters and low threading dislocation density of the order of 5 × 10</span><sup>4</sup> cm<sup>−2</sup><span>. Crystals with different types of conductivity<span>, n-type with free electron concentration up to 10</span></span><sup>19</sup> cm<sup>−3</sup>, p-type with free hole concentration of 10<sup>16</sup> cm<sup>−3</sup>, and semi-insulating with resistivity exceeding 10<sup>11</sup><span> Ω cm, can be obtained. Ammonothermal GaN of various electrical properties is described in terms of point defects present in the material. Potential applications of high-quality GaN substrates are also briefly shown.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 3","pages":"Pages 63-74"},"PeriodicalIF":5.1,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.05.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 71
Surface modification and grafting of carbon fibers: A route to better interface 碳纤维表面改性和接枝:获得更好界面的途径
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2018-09-01 DOI: 10.1016/j.pcrysgrow.2018.07.001
Nischith Raphael , K. Namratha , B.N. Chandrashekar , Kishor Kumar Sadasivuni , Deepalekshmi Ponnamma , A.S. Smitha , S. Krishnaveni , Chun Cheng , K. Byrappa
{"title":"Surface modification and grafting of carbon fibers: A route to better interface","authors":"Nischith Raphael ,&nbsp;K. Namratha ,&nbsp;B.N. Chandrashekar ,&nbsp;Kishor Kumar Sadasivuni ,&nbsp;Deepalekshmi Ponnamma ,&nbsp;A.S. Smitha ,&nbsp;S. Krishnaveni ,&nbsp;Chun Cheng ,&nbsp;K. Byrappa","doi":"10.1016/j.pcrysgrow.2018.07.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.07.001","url":null,"abstract":"<div><p><span>This review is an audit of various Carbon fibers (CF) surface modification techniques that have been attempted and which produced results with an enhancement in the interfacial characteristics of CFRP systems. An introduction to the CF </span>surface morphology<span>, various techniques of modifications, their results and challenges are discussed here. CFs are emerging as the most promising materials for designing many technologically significant materials for current and future generations. In order to extract all the physic-mechanical properties of CF, it is essential to modulate a suitable environment through which good interfacial relation is achieved between the CF and the matrix. The interface has the utmost significance in composites and hybrid materials<span> since tension at the interface can result in a deterioration of the fundamental properties. This review is aimed to provide a detailed understanding of the CF structure, its possible ways of modification, and the influence of interfacial compatibility in physic-mechanical and tribological properties. Both physical and chemical modifications are illustrated with specific examples, in addition to the characterization methods. Overall, this article provides key information about the CF based composite fabrication and their many applications in aerospace and electronics- where light weight and excellent mechanical strength are required.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 3","pages":"Pages 75-101"},"PeriodicalIF":5.1,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.07.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 52
Solution combustion synthesis, energy and environment: Best parameters for better materials 溶液燃烧合成,能源和环境:最佳参数为更好的材料
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2018-06-01 DOI: 10.1016/j.pcrysgrow.2018.03.001
Francesca Deganello , Avesh Kumar Tyagi
{"title":"Solution combustion synthesis, energy and environment: Best parameters for better materials","authors":"Francesca Deganello ,&nbsp;Avesh Kumar Tyagi","doi":"10.1016/j.pcrysgrow.2018.03.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.03.001","url":null,"abstract":"<div><p><span><span><span>Solution combustion synthesis<span> (SCS) is a worldwide used methodology for the preparation of inorganic ceramic and composite materials with controlled properties for a wide number of applications, from catalysis to photocatalysis and </span></span>electrocatalysis<span>, from heavy metal removal to sensoristics and electronics. The high versatility and efficiency of this technique have led to the introduction of many variants, which allowed important optimization to the prepared materials. Moreover, its ecofriendly nature encouraged further studies about the use of sustainable precursors for the preparation of </span></span>nanomaterials for energy and environment, according to the concept of </span><em>circular economy</em>. On the other hand, the large variety of expressions to define SCS and the often-contradictory definitions of the SCS parameters witnessed a scarce consciousness of the potentiality of this methodology. In this review article, the most important findings about SCS and the selection criteria for its main parameters are critically reviewed, in order to give useful guidelines to those scientists who want to use this methodology for preparing materials with improved or new functional properties. This review aims as well (i) to bring more clarity in the SCS terminology (ii) to increase the awareness of the SCS as a convenient tool for the synthesis of materials and (iii) to propose a new perspective in the SCS, with special attention to the use of ecofriendly procedures. Part of the review is also dedicated to precautions and limitations of this powerful methodology.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 2","pages":"Pages 23-61"},"PeriodicalIF":5.1,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 187
Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: Materials for applications 锰酸铋和铁酸铋电特性的合成和表征:掺杂对正离子和阴离子亚晶格的影响:应用材料
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2018-02-01 DOI: 10.1016/j.pcrysgrow.2018.02.001
A. Molak , D.K. Mahato , A.Z. Szeremeta
{"title":"Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: Materials for applications","authors":"A. Molak ,&nbsp;D.K. Mahato ,&nbsp;A.Z. Szeremeta","doi":"10.1016/j.pcrysgrow.2018.02.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.02.001","url":null,"abstract":"<div><p><span>The electrical, magnetic, and structural features of bismuth manganite (BM), e.g., BiMnO</span><sub>3</sub><span>, and bismuth ferrite (BF), e.g., BiFeO</span><sub>3</sub><span><span>, are reviewed. Induced multiferroicity and enhanced magnetoelectric coupling are required for various modern device applications. BM and BF were synthesized using standard high-temperature sintering and processes such as sol–gel, hydrothermal, or wet chemical methods combined with annealing. The size and morphology of the </span>nanoscale particles<span> were controlled, although they were usually inhomogeneous. BF exhibits structurally stable antiferromagnetic (AFM) and ferroelectric (FE) phases in wide temperature ranges</span></span><em>.</em><span> Ferromagnetic (FM) order was induced in a thick shell around the AFM core of the nanoscale BF particles, which was attributed to a size effect related to surface strains and disorder. BM exhibited both structurally stable and unstable phases. The BiMnO</span><sub>3</sub>, Bi<sub>12</sub>MnO<sub>20</sub>, and BiMn<sub>2</sub>O<sub>5</sub><span> structures are nonferroelectric. The perovskite BiMnO</span><sub>3</sub> form was synthesized under high hydrostatic pressure. FM order occurs in BM at low temperatures. Bi(MnFe)O<sub>3</sub><span><span><span><span> solid solution samples exhibited competition between AFM and FM ordering. Doping can decrease the content of unavoidable secondary phases. Doping in the Bi ion sublattice can stabilize the </span>crystal lattice owing to local strains caused by the difference in ionic radius between Bi and the </span>dopant. Doping in the Fe and Mn sublattices affects the electrical features. The main achievement of substitution with tetra- and pentavalent ions is compensation of the </span>oxygen vacancies<span><span><span><span>. In turn, leakage current suppression enables switching of FE domains and polarization of the samples. A significant enhancement of magnetoelectric coupling was observed in composites formed from BF and other FE materials. The leakage currents can be diminished when an insulator </span>polymer matrix blocks </span>percolation<span>. The potential applicability is related to enhanced magnetoelectric coupling. The constructed devices meet the size effect limitations for FE and FM ordering. Resistive switching suggests possible use in nonvolatile memories and gaseous sensors. The sensors can be used for hydrophones and for </span></span>photovoltaic<span> and photoluminescence<span> applications, and they can be constructed from multiphase materials. Bulk multiferroic solid solutions, composites, and nanoheterostructures have already been tested for use in sensors, transducers, and read/write devices for technical purposes.</span></span></span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 1","pages":"Pages 1-22"},"PeriodicalIF":5.1,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.02.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics 电子与光电子用(001)硅上高度不匹配III-V材料的外延生长
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2017-12-01 DOI: 10.1016/j.pcrysgrow.2017.10.001
Qiang Li , Kei May Lau
{"title":"Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics","authors":"Qiang Li ,&nbsp;Kei May Lau","doi":"10.1016/j.pcrysgrow.2017.10.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2017.10.001","url":null,"abstract":"<div><p>Monolithic integration of III-V on silicon<span><span> has been a scientifically appealing concept for decades. Notable progress has recently been made in this research area, fueled by significant interests of the electronics industry in high-mobility channel transistors and the booming development of silicon photonics technology. In this review article, we outline the fundamental roadblocks for the </span>epitaxial growth of highly mismatched III-V materials, including arsenides, phosphides, and antimonides, on (001) oriented silicon substrates. Advances in hetero-epitaxy and selective-area hetero-epitaxy from micro to nano length scales are discussed. Opportunities in emerging electronics and integrated photonics are also presented.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"63 4","pages":"Pages 105-120"},"PeriodicalIF":5.1,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2017.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3385824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 80
Lifting the mist of flatland: The recent progress in the characterizations of two-dimensional materials 解除平原的迷雾:二维材料表征的最新进展
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2017-09-01 DOI: 10.1016/j.pcrysgrow.2017.06.001
Mengjian Zhu , Kun Huang , Kai-Ge Zhou
{"title":"Lifting the mist of flatland: The recent progress in the characterizations of two-dimensional materials","authors":"Mengjian Zhu ,&nbsp;Kun Huang ,&nbsp;Kai-Ge Zhou","doi":"10.1016/j.pcrysgrow.2017.06.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2017.06.001","url":null,"abstract":"<div><p>In the great adventure of two-dimensional (2D) materials, the characterization techniques are the lighthouse to guide the investigators across heavy mist and submerged reef. In this review, we highlight the recent achievements in the characterization of the 2D materials. Firstly, the methods to identify the fundamental properties of the 2D materials are introduced. Then, the specific characterization techniques for analyzing electric, optical and chemical properties are summarized with regards to their corresponding fields of applications. It should also be noted that a big challenge remains in the characterizations of the 2D materials in the hybrid or composite and wide acceptance of the characterization standards need to be established to further promote the industrialization of 2D materials in the near future.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"63 3","pages":"Pages 72-93"},"PeriodicalIF":5.1,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2017.06.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信