{"title":"砷化镓上生长的InAs(Sb)/InGaAs/InAlAs纳米异质结构","authors":"S.V. Ivanov , M.Yu. Chernov , V.A. Solov'ev , P.N. Brunkov , D.D. Firsov , O.S. Komkov","doi":"10.1016/j.pcrysgrow.2018.12.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>High-efficiency semiconductor lasers and light-emitting diodes operating in the 3–5 μm mid-infrared (mid-IR) spectral range are currently of great demand for a wide variety of applications, in particular, gas sensing, noninvasive medical tests, </span>IR spectroscopy </span><em>etc.</em><span><span> III-V compounds with a lattice constant of about 6.1 Å are traditionally used for this spectral range. The attractive idea to fabricate such emitters on GaAs substrates by using In(Ga,Al)As compounds is restricted by either the minimum operating wavelength of ∼8 μm in case of pseudomorphic AlGaAs-based </span>quantum cascade lasers or requires utilization of thick metamorphic In</span><em><sub>x</sub></em>Al<sub>1</sub><em><sub>-x</sub></em><span>As buffer layers (MBLs) playing a key role in reducing the density of threading dislocations (TDs) in an active region, which otherwise result in a strong decay of the quantum efficiency of such mid-IR emitters. In this review we present the results of careful investigations of employing the convex-graded In</span><em><sub>x</sub></em>Al<sub>1</sub><em><sub>-x</sub></em><span><span>As MBLs for fabrication by molecular beam epitaxy on GaAs (001) substrates of In(Ga,Al)As </span>heterostructures<span> with a combined type-II/type-I InSb/InAs/InGaAs quantum well (QW) for efficient mid-IR emitters (3–3.6 μm). The issues of strain relaxation, elastic stress balance, efficiency of radiative and non-radiative recombination at </span></span><em>T</em> = 10–300 K are discussed in relation to molecular beam epitaxy (MBE) growth conditions and designs of the structures. A wide complex of techniques including <em>in-situ</em><span><span><span> reflection high-energy electron diffraction, </span>atomic force microscopy (AFM), scanning and </span>transmission electron microscopies<span>, X-ray diffractometry, reciprocal space mapping, selective area electron diffraction, as well as photoluminescence<span> (PL) and Fourier-transformed infrared spectroscopy was used to study in detail structural and optical properties of the metamorphic QW structures. Optimization of the growth conditions (the substrate temperature, the As</span></span></span><sub>4</sub>/III ratio) and elastic strain profiles governed by variation of an inverse step in the In content profile between the MBL and the InAlAs virtual substrate results in decrease in the TD density (down to 3 × 10<sup>7</sup> cm<sup>−2</sup><span>), increase of the thickness of the low-TD-density near-surface MBL region to 250–300 nm, the extremely low surface roughness with the RMS value of 1.6–2.4 nm, measured by AFM, as well as rather high 3.5 μm-PL intensity at temperatures up to 300 K in such structures. The obtained results indicate that the metamorphic InSb/In(Ga,Al)As QW heterostructures of proper design, grown under the optimum MBE conditions, are very promising for fabricating the efficient mid-IR emitters on a GaAs platform.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"65 1","pages":"Pages 20-35"},"PeriodicalIF":4.5000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.12.001","citationCount":"15","resultStr":"{\"title\":\"Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters\",\"authors\":\"S.V. Ivanov , M.Yu. Chernov , V.A. Solov'ev , P.N. Brunkov , D.D. Firsov , O.S. Komkov\",\"doi\":\"10.1016/j.pcrysgrow.2018.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>High-efficiency semiconductor lasers and light-emitting diodes operating in the 3–5 μm mid-infrared (mid-IR) spectral range are currently of great demand for a wide variety of applications, in particular, gas sensing, noninvasive medical tests, </span>IR spectroscopy </span><em>etc.</em><span><span> III-V compounds with a lattice constant of about 6.1 Å are traditionally used for this spectral range. The attractive idea to fabricate such emitters on GaAs substrates by using In(Ga,Al)As compounds is restricted by either the minimum operating wavelength of ∼8 μm in case of pseudomorphic AlGaAs-based </span>quantum cascade lasers or requires utilization of thick metamorphic In</span><em><sub>x</sub></em>Al<sub>1</sub><em><sub>-x</sub></em><span>As buffer layers (MBLs) playing a key role in reducing the density of threading dislocations (TDs) in an active region, which otherwise result in a strong decay of the quantum efficiency of such mid-IR emitters. In this review we present the results of careful investigations of employing the convex-graded In</span><em><sub>x</sub></em>Al<sub>1</sub><em><sub>-x</sub></em><span><span>As MBLs for fabrication by molecular beam epitaxy on GaAs (001) substrates of In(Ga,Al)As </span>heterostructures<span> with a combined type-II/type-I InSb/InAs/InGaAs quantum well (QW) for efficient mid-IR emitters (3–3.6 μm). The issues of strain relaxation, elastic stress balance, efficiency of radiative and non-radiative recombination at </span></span><em>T</em> = 10–300 K are discussed in relation to molecular beam epitaxy (MBE) growth conditions and designs of the structures. A wide complex of techniques including <em>in-situ</em><span><span><span> reflection high-energy electron diffraction, </span>atomic force microscopy (AFM), scanning and </span>transmission electron microscopies<span>, X-ray diffractometry, reciprocal space mapping, selective area electron diffraction, as well as photoluminescence<span> (PL) and Fourier-transformed infrared spectroscopy was used to study in detail structural and optical properties of the metamorphic QW structures. Optimization of the growth conditions (the substrate temperature, the As</span></span></span><sub>4</sub>/III ratio) and elastic strain profiles governed by variation of an inverse step in the In content profile between the MBL and the InAlAs virtual substrate results in decrease in the TD density (down to 3 × 10<sup>7</sup> cm<sup>−2</sup><span>), increase of the thickness of the low-TD-density near-surface MBL region to 250–300 nm, the extremely low surface roughness with the RMS value of 1.6–2.4 nm, measured by AFM, as well as rather high 3.5 μm-PL intensity at temperatures up to 300 K in such structures. The obtained results indicate that the metamorphic InSb/In(Ga,Al)As QW heterostructures of proper design, grown under the optimum MBE conditions, are very promising for fabricating the efficient mid-IR emitters on a GaAs platform.</span></p></div>\",\"PeriodicalId\":409,\"journal\":{\"name\":\"Progress in Crystal Growth and Characterization of Materials\",\"volume\":\"65 1\",\"pages\":\"Pages 20-35\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.12.001\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Crystal Growth and Characterization of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960897418300366\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897418300366","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters
High-efficiency semiconductor lasers and light-emitting diodes operating in the 3–5 μm mid-infrared (mid-IR) spectral range are currently of great demand for a wide variety of applications, in particular, gas sensing, noninvasive medical tests, IR spectroscopy etc. III-V compounds with a lattice constant of about 6.1 Å are traditionally used for this spectral range. The attractive idea to fabricate such emitters on GaAs substrates by using In(Ga,Al)As compounds is restricted by either the minimum operating wavelength of ∼8 μm in case of pseudomorphic AlGaAs-based quantum cascade lasers or requires utilization of thick metamorphic InxAl1-xAs buffer layers (MBLs) playing a key role in reducing the density of threading dislocations (TDs) in an active region, which otherwise result in a strong decay of the quantum efficiency of such mid-IR emitters. In this review we present the results of careful investigations of employing the convex-graded InxAl1-xAs MBLs for fabrication by molecular beam epitaxy on GaAs (001) substrates of In(Ga,Al)As heterostructures with a combined type-II/type-I InSb/InAs/InGaAs quantum well (QW) for efficient mid-IR emitters (3–3.6 μm). The issues of strain relaxation, elastic stress balance, efficiency of radiative and non-radiative recombination at T = 10–300 K are discussed in relation to molecular beam epitaxy (MBE) growth conditions and designs of the structures. A wide complex of techniques including in-situ reflection high-energy electron diffraction, atomic force microscopy (AFM), scanning and transmission electron microscopies, X-ray diffractometry, reciprocal space mapping, selective area electron diffraction, as well as photoluminescence (PL) and Fourier-transformed infrared spectroscopy was used to study in detail structural and optical properties of the metamorphic QW structures. Optimization of the growth conditions (the substrate temperature, the As4/III ratio) and elastic strain profiles governed by variation of an inverse step in the In content profile between the MBL and the InAlAs virtual substrate results in decrease in the TD density (down to 3 × 107 cm−2), increase of the thickness of the low-TD-density near-surface MBL region to 250–300 nm, the extremely low surface roughness with the RMS value of 1.6–2.4 nm, measured by AFM, as well as rather high 3.5 μm-PL intensity at temperatures up to 300 K in such structures. The obtained results indicate that the metamorphic InSb/In(Ga,Al)As QW heterostructures of proper design, grown under the optimum MBE conditions, are very promising for fabricating the efficient mid-IR emitters on a GaAs platform.
期刊介绍:
Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.
Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.