Powder Technology最新文献

筛选
英文 中文
Spatially resolved CFD-DEM model with innovative experimental validation methods to improve understanding of sand retention in oil and gas wells with the consideration of filter-beds on standalone screens 空间分辨 CFD-DEM 模型与创新实验验证方法,通过考虑独立滤网上的滤床,加深对油气井中砂滞留的理解
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-11-02 DOI: 10.1016/j.powtec.2024.120406
Razqan Razak , Mohammad S. Alosail , Khaliq I. Musa , Paula A. Gago , Shaheryar Hussain , Zhixi Chen , Stephen Tyson , Sheikh S. Rahman
{"title":"Spatially resolved CFD-DEM model with innovative experimental validation methods to improve understanding of sand retention in oil and gas wells with the consideration of filter-beds on standalone screens","authors":"Razqan Razak ,&nbsp;Mohammad S. Alosail ,&nbsp;Khaliq I. Musa ,&nbsp;Paula A. Gago ,&nbsp;Shaheryar Hussain ,&nbsp;Zhixi Chen ,&nbsp;Stephen Tyson ,&nbsp;Sheikh S. Rahman","doi":"10.1016/j.powtec.2024.120406","DOIUrl":"10.1016/j.powtec.2024.120406","url":null,"abstract":"<div><div>Coupling CFD and DEM is commonly used to study particle-fluid flow in sand retention systems for oil and gas wells, addressing the limitations of laboratory experiments and reliance on empirical data. These numerical studies aid in optimising standalone sand screens, which are favoured over gravel-pack completions for cost-effectiveness. However, such studies overlook the critical role of the bulk filter-bed in retaining permeability for both particulate and fluid phases. This paper presents a robust numerical methodology using resolved CFD-DEM to model a sand retention system that accurately captures filter-bed permeability, which has a greater impact on sand production and retained fluid productivity than the screen itself from a long-term perspective. The numerical model's accuracy is validated through a novel experimental methodology, which involves benchmarking the numerically derived porosity and single-phase permeability against micro-CT imaging of the filter-bed. Results show strong consistency between the numerical model and micro-CT imaging of the laboratory-derived filter-bed. This validated model provides a solid foundation for running more accurate sand retention tests and improving standalone sand screen selection criteria. Future work will explore the effects of varying parameters on the filter-bed formation to determine optimal conditions for maximising sand retention while maintaining hydrocarbon productivity from a long-term perspective.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120406"},"PeriodicalIF":4.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Performance study of covalently polymerized dust suppressant via Maillard reaction 通过 Maillard 反应制备共价聚合抑尘剂及其性能研究
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-11-01 DOI: 10.1016/j.powtec.2024.120409
Wu Baoyang , Song Shaofu , Liu Jurong , Zhang Yanni , Huang Yunfeng
{"title":"Preparation and Performance study of covalently polymerized dust suppressant via Maillard reaction","authors":"Wu Baoyang ,&nbsp;Song Shaofu ,&nbsp;Liu Jurong ,&nbsp;Zhang Yanni ,&nbsp;Huang Yunfeng","doi":"10.1016/j.powtec.2024.120409","DOIUrl":"10.1016/j.powtec.2024.120409","url":null,"abstract":"<div><div>To effectively address coal dust pollution, the amino group (−NH<sub>2</sub>) in soy protein isolate was reacted with the carbonyl group (C=O) produced by corn starch through the Maillard reaction, overcoming the disadvantages of the existing modification methods such as sophisticated process and toxic monomer, and the optimal surfactant was determined to be SDBS by sedimentation experiments, an environmentally friendly polyhydroxy dust suppressant with both wetting and coagulation functions was finally prepared. The structural changes of the product, the reaction mechanism, and the microscopic morphology of the coal were analyzed by FTIR, XRD, and SEM. The large amount of hydroxyl groups (-OH) contained in the dust suppressant, combined with the oxygen-containing groups of the coal dust, is able to form hydrogen bonds, which promotes the agglomeration of the coal dust. The wind erosion resistance rates of this dust suppressant were 99.87 % and 99.01 % at wind speeds of 6 m/s and 12 m/s, respectively.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120409"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a XGBoost-based drag force model for freely evolving particle suspensions 为自由演变的颗粒悬浮液开发基于 XGBoost 的阻力模型
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-11-01 DOI: 10.1016/j.powtec.2024.120408
Ze Cao , Danesh K. Tafti
{"title":"Development of a XGBoost-based drag force model for freely evolving particle suspensions","authors":"Ze Cao ,&nbsp;Danesh K. Tafti","doi":"10.1016/j.powtec.2024.120408","DOIUrl":"10.1016/j.powtec.2024.120408","url":null,"abstract":"<div><div>An XGBoost-based drag model is developed using data from Particle Resolved Simulations (PRS) of freely evolving spherical particle suspensions, encompassing Reynolds numbers from 10 to 300, solid volume fraction between 0.1 and 0.4, and particle-to-fluid density ratio of 2, 10 and 100. Drag force data from 150 continuous time instances in PRS are divided into two sets: the first set that includes data from the initial 120 instances is used for training the model and interpolation testing, while the second set comprises drag forces from the final 30 instances is used exclusively for extrapolation testing. Both interpolation and extrapolation tests demonstrate significantly improved accuracy compared to traditional drag correlations. Notably, the model achieves its highest prediction accuracy for particles with density ratios of 100, which is attributed to the increased influence of unsteady drag forces at lower density ratios that cannot be fully captured by instantaneous particle distributions alone.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120408"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic simulation on triaxial compression creep of rockfill based on subcritical crack propagation theory 基于次临界裂纹扩展理论的填石三轴压缩蠕变微观模拟
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-10-30 DOI: 10.1016/j.powtec.2024.120403
Xinjie Zhou , Shichun Chi , Yufeng Jia , Yu Guo , Wenquan Feng , Shihao Yan , Tengteng Wang , Xiyu Ma
{"title":"Microscopic simulation on triaxial compression creep of rockfill based on subcritical crack propagation theory","authors":"Xinjie Zhou ,&nbsp;Shichun Chi ,&nbsp;Yufeng Jia ,&nbsp;Yu Guo ,&nbsp;Wenquan Feng ,&nbsp;Shihao Yan ,&nbsp;Tengteng Wang ,&nbsp;Xiyu Ma","doi":"10.1016/j.powtec.2024.120403","DOIUrl":"10.1016/j.powtec.2024.120403","url":null,"abstract":"<div><div>Over time, natural cracks within particles propagate under tensile stress, leading to the delayed breakage of these particles, which significantly contributes to the time-dependent deformation of rockfill materials. In this study, a delayed strength model for spherical particles with virtual cracks is proposed using subcritical crack propagation theory and validated through indoor single-particle creep tests. Based on the model, particles are represented as ideal spheres in the context of triaxial compression creep simulations for rockfill, with special attention to particle size effects, discreteness, and temporal factors. The combined influence of long-term strength and maximum contact force is crucial in determining the delayed particle breakage. Comparative analysis with indoor triaxial creep tests demonstrates that the Discrete Element Method (DEM) simulations accurately model the creep deformation phenomena related to delayed particle breakage in rockfill. Furthermore, statistical analysis indicates that a minor fraction of delayed particle breakage has a negligible impact on the temporal distribution of the Normalized Maximum Contact Force (NMCF).</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120403"},"PeriodicalIF":4.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure optimization for the discharge arm of the self-propelled forage harvester based on CFD-DEM 基于 CFD-DEM 的自走式牧草收割机卸料臂结构优化
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-10-29 DOI: 10.1016/j.powtec.2024.120399
Lei Liu, Xiaoyu Li, Yuefeng Du, Guorun Li, Yucong Wang, Du Chen, Zhongxiang Zhu, Zhenghe Song
{"title":"Structure optimization for the discharge arm of the self-propelled forage harvester based on CFD-DEM","authors":"Lei Liu,&nbsp;Xiaoyu Li,&nbsp;Yuefeng Du,&nbsp;Guorun Li,&nbsp;Yucong Wang,&nbsp;Du Chen,&nbsp;Zhongxiang Zhu,&nbsp;Zhenghe Song","doi":"10.1016/j.powtec.2024.120399","DOIUrl":"10.1016/j.powtec.2024.120399","url":null,"abstract":"<div><div>To optimize the structure of the discharge arm of the self-propelled harvester and improve the harvesting efficiency to reduce the loss, we first established a mathematical model of the gas-solid two-phase of the forage in the unloading process. Next, we revealed the flow characteristics of forage and the influence of key structures of the discharge arm using the CFD-DEM. Then, we optimized the key structural parameters of the discharge arm using the orthogonal test and response surface method. Finally, we carried out the simulation and field experiment on the forage conveying performance of the discharge arm. The experimental results show that the maximum conveying distance of the new discharge arm is more than 27 m, significantly reducing the spraying loss and improving the harvesting efficiency. Our research findings provide a new reference for optimizing the agricultural material conveying machines and exploring the movement characteristics of agricultural materials in different pipelines.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120399"},"PeriodicalIF":4.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cork powder: Benefits and limitations as a sustainable cosmetic ingredient 软木粉:作为可持续化妆品成分的优点和局限性
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-10-28 DOI: 10.1016/j.powtec.2024.120396
Sandra Mota , Ana Torres , Ana Silva , José Paulo Silva , Joana Rocha e Silva , Helena Neto Ferreira , Maria T. Cruz , Isabel Martins de Almeida
{"title":"Cork powder: Benefits and limitations as a sustainable cosmetic ingredient","authors":"Sandra Mota ,&nbsp;Ana Torres ,&nbsp;Ana Silva ,&nbsp;José Paulo Silva ,&nbsp;Joana Rocha e Silva ,&nbsp;Helena Neto Ferreira ,&nbsp;Maria T. Cruz ,&nbsp;Isabel Martins de Almeida","doi":"10.1016/j.powtec.2024.120396","DOIUrl":"10.1016/j.powtec.2024.120396","url":null,"abstract":"<div><div>To compensate for the massive environmental footprint of the cosmetic industry, this sector aims at a circular production/consumption system while intersecting the consumers' concerns about the exacerbated exploitation of natural resources. The high amount of agro-industrial waste generated by cork industries is of great interest due to the sustainable and regenerative capabilities of <em>Quercus suber</em> bark. This work aimed to explore the properties of cork powder, a by-product from cork processing, as a putative cosmetic ingredient. This powder was studied regarding the flowability and compressibility envisioning its use in solid water-free formulations, as well as the potential use as a functional ingredient in skin care and sun care formulations. Cork powder revealed a high compressibility and cake strength, which favors the formulation of water-free pressed powders. Poor flowability (Hausner ratio of 1.38 ± 0.01) should be, however, considered in the formulation design. The powder also revealed high oil absorption ability (203.6 ± 1.4 g/100 g) and sun protection factor (SPF) boosting effect, increasing SPF twofold when compared to a standard formulation. Ultimately, the safety profile of the cork powder was confirmed in cells representative of the human epidermis up to 50 mg/mL. Limitations of this product are associated with being a natural product, namely a high microbiological burden. This issue, along with stability and reproducibility should be addressed before considering industrial application. Cork powder showed a multifunctional profile, supporting its use as a sustainable stiffening ingredient agent of solid/water-free decorative cosmetics, or as a mattifying and photoprotective agent.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120396"},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study on the deposition distribution and mechanism of inhaled drug particles in various regions of the realistic inhaler-airway model 关于吸入药物颗粒在现实吸入器-气道模型各区域沉积分布和机制的数值研究
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-10-28 DOI: 10.1016/j.powtec.2024.120402
Lixing Zhang , Zhenbo Tong , Ya Zhang , Aibing Yu
{"title":"Numerical study on the deposition distribution and mechanism of inhaled drug particles in various regions of the realistic inhaler-airway model","authors":"Lixing Zhang ,&nbsp;Zhenbo Tong ,&nbsp;Ya Zhang ,&nbsp;Aibing Yu","doi":"10.1016/j.powtec.2024.120402","DOIUrl":"10.1016/j.powtec.2024.120402","url":null,"abstract":"<div><div>Inhaled drug delivery is widely used in the treatment of respiratory diseases. Understanding the deposition mechanisms of dry powder inhalers (DPIs) in different regions of the airway is crucial for inhaler development and prediction of the deposition distribution of drug particles. And the insertion of the inhaler will significantly alter the pattern of airflow in the airway. The main objective of this study is to systematically investigate the distribution and mechanism of aerosol particle deposition in various regions of the inhaler-airway model. Computational fluid dynamics (CFD) was used to simulate the effect of inhalation flow rate on the deposition of drug particles in various regions of the airway. The discrete phase model (DPM) was adopted to track the deposition trajectories of drug particles. Three different inhalation flow rates together with six particle sizes and five particle densities were analyzed. The results indicated that the overall deposition fraction of drug particles gradually increased with particle size and density. The pattern of depositional distribution in other local areas is quite different from the overall pattern except in the oral. The deposition fraction in the pharynx was much larger than in the other local regions, the deposition fractions in the larynx, trachea, carina and bronchi were less than 5 %. The increase in density increases the deposition fraction of particles in various regions throughout the respiratory tract when the inhalation flow rate is 30 L/min. Most of the particles in the oral are deposited on the tongue, and the particles in the bronchus are more distributed in the main trunk, while deeper in the bronchus, particles are also deposited in the bifurcation region. The subject's inhalation posture also affects the local distribution of the airflow. The findings of present study can help to guide the optimization and in vitro-in vivo correlation of DPIs.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120402"},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new aerosol delivery approach for enhanced long-term respiratory care in resource-poor settings 在资源匮乏地区加强长期呼吸道护理的新型气雾剂输送方法
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-10-28 DOI: 10.1016/j.powtec.2024.120398
Mohammed Asad Khan, Hrishikesh Gadgil, Sudarshan Kumar
{"title":"A new aerosol delivery approach for enhanced long-term respiratory care in resource-poor settings","authors":"Mohammed Asad Khan,&nbsp;Hrishikesh Gadgil,&nbsp;Sudarshan Kumar","doi":"10.1016/j.powtec.2024.120398","DOIUrl":"10.1016/j.powtec.2024.120398","url":null,"abstract":"<div><div>Continuous aerosol therapy is safe, superior, and the mainstay in the therapy of patients with severe asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), and coronavirus disease (COVID-19). However, continuous nebulization has been perceived as highly expensive and labor-intensive, which often requires specialized medical equipment. Moreover, it is difficult to maintain consistent aerosol output and particle size delivery over an extended period without operator intervention. This work proposes a simple and reliable continuous nebulization method using a conventional gas jet nebulizer and intravenous (IV) bottle/bag. The present work reports detailed experimental studies on a gas jet nebulizer with Particle image velocimetry (PIV), Particle/droplet Imaging Analysis (PDIA), and Mie scattering techniques to demonstrate the feasibility of the proposed technique. The preliminary investigation shows that the proposed method provides continuous liquid output delivery without external supervision. The liquid delivery rate and mass median diameter (MMD) of the nebulizer mainly depend on the gas flow rate and suction height. The MMD of the primary generated droplets is reported to vary between 100 and 230 μm for a ± 10 cm suction height and 500–1000 mlph nebulization gas flow rate. Most importantly, the nebulizer spray angle, stability, droplet size distribution, and the axial and radial velocities of the droplets are marginally affected by the suction height. Therefore, the proposed system is a versatile, safe, and cost-effective method of continuous nebulization therapy, especially in resource-poor countries or contagious disease outbreak situations.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120398"},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process control and design of drying technologies for biopharmaceuticals – A review 生物制药干燥技术的过程控制和设计 - 综述
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-10-28 DOI: 10.1016/j.powtec.2024.120395
Wiktoria Brytan , Rodrigo Amorim , Luis Padrela
{"title":"Process control and design of drying technologies for biopharmaceuticals – A review","authors":"Wiktoria Brytan ,&nbsp;Rodrigo Amorim ,&nbsp;Luis Padrela","doi":"10.1016/j.powtec.2024.120395","DOIUrl":"10.1016/j.powtec.2024.120395","url":null,"abstract":"<div><div>Research into the production of solid-state biomolecules has increased in the last decade, uncovering new routes of administration and enhanced product stability. Freeze drying is the most common industrial method for biomolecule dehydration, however it requires long processing times and does not allow for particle engineering. Hence, new drying techniques are constantly being developed to produce dried biopharmaceuticals, facilitating the switch from batch to continuous manufacturing and improving control over particle attributes. The sensitive nature of biological products requires comprehensive optimisation of these new methods against the various degradative stresses imposed by drying. Process control and optimisation is key in minimizing many of these stresses, allowing production of dried powders with pre-determined characteristics (e.g. particle morphology, size and density). In this review, we provide a detailed overview of current methods used to date for the drying of biologics and the particle engineering capabilities of these methods, along with the process control possibilities that emerge with process analytical technology (PAT). We also look at the extent of mass and energy balances informing process optimisation and the effect of process controls on biomolecule stability, drying efficiency, and particle engineering.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120395"},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on ash accumulation surface measurement methods based on the dot laser principle 基于点激光原理的积灰表面测量方法研究
IF 4.5 2区 工程技术
Powder Technology Pub Date : 2024-10-24 DOI: 10.1016/j.powtec.2024.120389
Qianlong Li, Zhengwei Long, Wenjia Hao, Shaojie Guo
{"title":"Research on ash accumulation surface measurement methods based on the dot laser principle","authors":"Qianlong Li,&nbsp;Zhengwei Long,&nbsp;Wenjia Hao,&nbsp;Shaojie Guo","doi":"10.1016/j.powtec.2024.120389","DOIUrl":"10.1016/j.powtec.2024.120389","url":null,"abstract":"<div><div>Dust collectors are essential environmental protection equipment in thermal power plants. However, in recent years, collapses caused by excessively high material levels in the ash hopper in dust collectors have increased frequently, resulting in serious casualties and significant economic losses. The level gauge of the ash hopper is a crucial device for detecting the material level in the ash hopper and plays a vital role in preventing the ash hopper from collapsing due to excessive material load. However, level gauges of the ash hopper currently in use have various problems. Laser-ranging technology is characterized by concentrated energy, a small divergence angle, and the ability to penetrate dust. We have proposed a new material-level measurement method based on the dot matrix laser ranging principle. This method utilizes dot-matrix laser ranging and visualizes the optimized measurement data to ultimately derive information about the material surface's morphology and level. A physical hopper model is used to conduct verification experiments on various material surface morphologies, material levels, and the material hanging on the hopper wall. The results indicate that this method can accurately identify the material level and the material hanging on the hopper wall, preventing false alarms due to “false material levels.”</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120389"},"PeriodicalIF":4.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信