Physics ReportsPub Date : 2024-10-22DOI: 10.1016/j.physrep.2024.10.002
R. Bailhache , D. Bonocore , P. Braun-Munzinger , X. Feal , S. Floerchinger , J. Klein , K. Köhler , P. Lebiedowicz , C.M. Peter , R. Rapp , K. Reygers , W. Schäfer , H.S. Scheid , K. Schweda , J. Stachel , H. van Hees , C.A. van Veen , M. Völkl
{"title":"Anomalous soft photons: Status and perspectives","authors":"R. Bailhache , D. Bonocore , P. Braun-Munzinger , X. Feal , S. Floerchinger , J. Klein , K. Köhler , P. Lebiedowicz , C.M. Peter , R. Rapp , K. Reygers , W. Schäfer , H.S. Scheid , K. Schweda , J. Stachel , H. van Hees , C.A. van Veen , M. Völkl","doi":"10.1016/j.physrep.2024.10.002","DOIUrl":"10.1016/j.physrep.2024.10.002","url":null,"abstract":"<div><div>This report summarizes the work of the EMMI Rapid Reaction Task Force on “Real and Virtual Photon Production at Ultra-Low Transverse Momentum and Low Mass at the LHC”. We provide an overview of the soft-photon puzzle, i.e., of the long-standing discrepancy between experimental data and predictions based on Low’s soft-photon theorem, also referred to as “anomalous” soft photon production, and we review the current theoretical understanding of soft radiation and soft theorems. We also focus on low-mass dileptons as a tool for determining the electrical conductivity of the medium produced in high-energy nucleus–nucleus collisions. We discuss how both topics can be addressed with the planned ALICE 3 detector at the LHC.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1097 ","pages":"Pages 1-40"},"PeriodicalIF":23.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics ReportsPub Date : 2024-09-27DOI: 10.1016/j.physrep.2024.09.009
Paweł Cieśliński , Satoya Imai , Jan Dziewior , Otfried Gühne , Lukas Knips , Wiesław Laskowski , Jasmin Meinecke , Tomasz Paterek , Tamás Vértesi
{"title":"Analysing quantum systems with randomised measurements","authors":"Paweł Cieśliński , Satoya Imai , Jan Dziewior , Otfried Gühne , Lukas Knips , Wiesław Laskowski , Jasmin Meinecke , Tomasz Paterek , Tamás Vértesi","doi":"10.1016/j.physrep.2024.09.009","DOIUrl":"10.1016/j.physrep.2024.09.009","url":null,"abstract":"<div><div>Measurements with randomly chosen settings determine many important properties of quantum states without the need for a shared reference frame or calibration. They naturally emerge in the context of quantum communication and quantum computing when dealing with noisy environments, and allow the estimation of properties of complex quantum systems in an easy and efficient manner. In this review, we present the advancements made in utilising randomised measurements in various scenarios of quantum information science. We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement. Bell inequalities are discussed to be typically violated even with randomised measurements, especially for a growing number of particles and settings. Furthermore, we also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements. Throughout the review, we complement the description of theoretical ideas by explaining key experiments.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1095 ","pages":"Pages 1-48"},"PeriodicalIF":23.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics ReportsPub Date : 2024-09-26DOI: 10.1016/j.physrep.2024.09.011
Majed S. Alghamdi , Mahmoud E. Khater , Mohamed Arabi , Eihab M. Abdel-Rahman
{"title":"Dynamics of large oscillations in electrostatic MEMS","authors":"Majed S. Alghamdi , Mahmoud E. Khater , Mohamed Arabi , Eihab M. Abdel-Rahman","doi":"10.1016/j.physrep.2024.09.011","DOIUrl":"10.1016/j.physrep.2024.09.011","url":null,"abstract":"<div><div>We present a comprehensive experimental study of the dynamics of electrostatic MEMS resonators under large excitations. We identified three frequency ranges where large oscillations occur; a non-resonant region driven by fast–slow dynamic interactions and two resonant regions. In these regions, we found a plethora of dynamic phenomena including cascades of period-doubling bifurcations, a bubble structure, homoclinic and cyclic-fold bifurcations, hysteresis, intermittencies, quasiperiodicity, chaotic attractors, odd-periodic windows within those attractors, Shilnikov orbits, and Shilnikov chaos.</div><div>We encountered these complex nonlinear dynamics phenomena under relatively high dissipation levels, the quality factors of the resonators examined in this study were Q <span><math><mo>=</mo></math></span> 6.2 and 2.1. In the case of MEMS with higher quality factors <span><math><mrow><mo>(</mo><mi>Q</mi><mo>></mo><mn>100</mn><mo>)</mo></mrow></math></span>, it is quite reasonable to expect those phenomena to appear under relatively low excitation levels (compared to the static pull-in voltage). This calls for a new paradigm in the design of electrostatic MEMS that seeks to manage dynamic phenomena rather than attempt to avoid them and, thereby, overly restricting the design space. We believe this is feasible given the repeatable and predictable nature of those phenomena.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1094 ","pages":"Pages 1-36"},"PeriodicalIF":23.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics ReportsPub Date : 2024-09-24DOI: 10.1016/j.physrep.2024.09.007
Huanhuan Yang, Lingling Song, Yunshan Cao, Peng Yan
{"title":"Circuit realization of topological physics","authors":"Huanhuan Yang, Lingling Song, Yunshan Cao, Peng Yan","doi":"10.1016/j.physrep.2024.09.007","DOIUrl":"10.1016/j.physrep.2024.09.007","url":null,"abstract":"<div><div>Recently, topolectrical circuits (TECs) boom in studying the topological states of matter. The resemblance between circuit Laplacians and tight-binding models in condensed matter physics allows for the exploration of exotic topological phases on the circuit platform. In this review, we begin by presenting the basic equations for the circuit elements and units, along with the fundamentals and experimental methods for TECs. Subsequently, we retrospect the main literature in this field, encompassing the circuit realization of (higher-order) topological insulators and semimetals. Due to the abundant electrical elements and flexible connections, many unconventional topological states like the non-Hermitian, nonlinear, non-Abelian, non-periodic, non-Euclidean, and higher-dimensional topological states that are challenging to observe in conventional condensed matter physics, have been observed in circuits and summarized in this review. Furthermore, we show the capability of electrical circuits for exploring the physical phenomena in other systems, such as photonic and magnetic ones. Importantly, we highlight TEC systems are convenient for manufacture and miniaturization because of their compatibility with the traditional integrated circuits. Finally, we prospect the future directions in this exciting field, and connect the emerging TECs with the development of topology physics, (meta)material designs, and device applications.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1093 ","pages":"Pages 1-54"},"PeriodicalIF":23.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics ReportsPub Date : 2024-09-21DOI: 10.1016/j.physrep.2024.09.003
Dániel Jánosi , Tamás Tél
{"title":"Overview of the advances in understanding chaos in low-dimensional dynamical systems subjected to parameter drift","authors":"Dániel Jánosi , Tamás Tél","doi":"10.1016/j.physrep.2024.09.003","DOIUrl":"10.1016/j.physrep.2024.09.003","url":null,"abstract":"<div><div>This paper offers a review while also studying yet unexplored features of the area of chaotic systems subjected to parameter drift of non-negligible rate, an area where the methods of traditional chaos theory are not applicable. Notably, periodic orbit expansion cannot be applied since no periodic orbits exist, nor do long-time limits, since for drifting physical processes the observational time can only be finite. This means that traditional Lyapunov-exponents are also ill-defined. Furthermore, such systems are non-ergodic, time and ensemble averages are different, the ensemble approach being superior to the single-trajectory view. In general, attractors and phase portraits are time-dependent in a non-periodic fashion. We describe the use of general methods which remain nevertheless applicable in such systems. In the phase space, the analysis is based on stable and unstable foliations, their intersections defining a Smale horseshoe, and the intersection points can be identified with the chaotic set governing the core of the drifting chaotic dynamics. Because of the drift, foliations and chaotic sets are also time-dependent, snapshot objects. We give a formal description for the time-dependent natural measure, illustrated by numerical examples. As a quantitative indicator for the strength of chaos, the so-called ensemble-averaged pairwise distance (EAPD) can be evaluated at any time instant. The derivative of this function can be considered the instantaneous (largest) Lyapunov exponent. We show that snapshot chaotic saddles, the central concept of transient chaos, can be identified in drifting systems as the intersections of the foliations, possessing a time-dependent escape rate in general. In dissipative systems, we find that the snapshot attractor coincides with the unstable foliation, and can consist of more than one component. These are a chaotic one, an extended snapshot chaotic saddle, and multiple regular time-dependent attractor points. When constructing the time-dependent basins of attraction of the attractor points, we find that the basin boundaries are time-dependent and fractal-like, containing the stable foliation, and that they can even exhibit Wada properties. In the Hamiltonian case, we study the phenomenon of the break-up of tori due to the drift in terms of both foliations and EAPD functions. We find that time-dependent versions of chaotic seas are not always fully chaotic, they can contain non-chaotic regions. Within such regions we identify time-dependent non-hyperbolic regions, the analogs of sticky zones of classical Hamiltonian phase spaces. We provide approximate formulas for the information dimension of snapshot objects, based on time-dependent Lyapunov exponents and escape rates. Besides these results, we also give possible applications of our methods e.g. in climate science and in the area of Lagrangian Coherent Structures.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1092 ","pages":"Pages 1-64"},"PeriodicalIF":23.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics ReportsPub Date : 2024-09-20DOI: 10.1016/j.physrep.2024.09.005
Assa Auerbach, Sauri Bhattacharyya
{"title":"Quantum transport theory of strongly correlated matter","authors":"Assa Auerbach, Sauri Bhattacharyya","doi":"10.1016/j.physrep.2024.09.005","DOIUrl":"10.1016/j.physrep.2024.09.005","url":null,"abstract":"<div><p>This report reviews recent progress in computing Kubo formulas for general interacting Hamiltonians. The aim is to calculate electric and thermal magneto-conductivities in strong scattering regimes where Boltzmann equation and Hall conductivity proxies exceed their validity. Three primary approaches are explained.</p><p>1. Degeneracy-projected polarization formulas for Hall-type conductivities, which substantially reduce the number of calculated current matrix elements. These expressions generalize the Berry curvature integral formulas to imperfect lattices.</p><p>2. Continued fraction representation of dynamical longitudinal conductivities. The calculations produce a set of thermodynamic averages, which can be controllably extrapolated using their mathematical relations to low and high frequency conductivity asymptotics.</p><p>3. Hall-type coefficients summation formulas, which are constructed from thermodynamic averages.</p><p>The thermodynamic formulas are derived in the operator Hilbert space formalism, which avoids the opacity and high computational cost of the Hamiltonian eigenspectrum. The coefficients can be obtained by well established imaginary-time Monte Carlo sampling, high temperature expansion, traces of operator products, and variational wavefunctions at low temperatures.</p><p>We demonstrate the power of approaches 1–3 by their application to well known models of lattice electrons and bosons. The calculations clarify the far-reaching influence of strong local interactions on the metallic transport near Mott insulators. Future directions for these approaches are discussed.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1091 ","pages":"Pages 1-63"},"PeriodicalIF":23.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics ReportsPub Date : 2024-09-14DOI: 10.1016/j.physrep.2024.09.001
Songlin Zhuang , Xiaotian Lin , Xinghu Yu , Zhihong Zhao , Fangzhou Liu , Stefano Boccaletti , Huijun Gao
{"title":"The Physics of micro- and nano-manipulation: Fundamentals and applications","authors":"Songlin Zhuang , Xiaotian Lin , Xinghu Yu , Zhihong Zhao , Fangzhou Liu , Stefano Boccaletti , Huijun Gao","doi":"10.1016/j.physrep.2024.09.001","DOIUrl":"10.1016/j.physrep.2024.09.001","url":null,"abstract":"<div><p>Since the emergent advent of miniaturized technologies in the last century, the past ninety years have witnessed the extensive use of micro- and nano-manipulation methods, which were promoted by the tremendous advances in fundamental physics as well as in techniques for sensing and actuating and in award-winning precision instrumentation. Micro- and nano-manipulation techniques imply the application of distinct physical laws at distinct spatial scales, and in turn enabled unprecedented progress in a significant number of scientific disciplines, particularly in the life sciences and its biomedical applications. Today, scientists have to cope with a series of issues that are inherently related to theory implementations at micro- and nanoscales, in the attempt to reveal the underlying principles that can enhance the capability of manipulating micrometer and nanometer-sized objects. Our report has the aim of giving an extensive review of the major results achieved in the study of micro- and nano-manipulation, by focusing on how fundamental physics (from robotic manipulation to magnetic, acoustic and optical fields, to electric and fluidic methods) is elaborated and leveraged to gather control over small objects, and how novel techniques are conceptually designed and practically implemented for important tool sets. We also summarize the representative applications in many disciplines over the past decades and discuss potential trends and open problems for future studies.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1090 ","pages":"Pages 1-70"},"PeriodicalIF":23.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics ReportsPub Date : 2024-09-13DOI: 10.1016/j.physrep.2024.08.002
A. Ng
{"title":"Progress in the study of electron–ion coupling in nonequilibrium Warm Dense Au and Cu","authors":"A. Ng","doi":"10.1016/j.physrep.2024.08.002","DOIUrl":"10.1016/j.physrep.2024.08.002","url":null,"abstract":"<div><p>Electron–ion coupling is a fundamental process in nonequilibrium Warm Dense Matter. It also plays a central role in governing the states resulting from the interaction of high-intensity ultrafast lasers and free-electron-lasers with matter, an area that is of growing interest. Our inadequate understanding of the process was revealed in 1992 by the discovery of much weaker than expected electron–ion coupling in the nonequilibrium state at a shock front in Si where energy was transferred from hot ions to cold electrons. This necessarily raised questions about the behavior of electron–ion coupling in states with hot electrons and cold ions. It became a new focus of the field with the discovery of apparently constant electron–ion coupling in <span><math><mrow><mi>f</mi><mi>s</mi></mrow></math></span>-laser heated Au, prompting a wide range of experimental and theoretical investigations of non-equilibrium warm dense Au as well as Cu for almost two decades. Fueling the pursuit were the findings of both constant and temperature-dependent coupling from subsequent experiments while the results of theoretical models were revealing reduced electron temperature dependence of electron–ion coupling. The goal of this review is to provide a concise historical account of the reported investigations, focussing on the salient characteristics of the experiments and models and how the diverse findings may be reconciled. Surprisingly, with alternative interpretations of some of the experimental results, a consistent behavior of weak electron–ion coupling has now emerged for <span><math><mrow><mi>f</mi><mi>s</mi></mrow></math></span>-laser heated Au and Cu for electron temperature up to 20,000 K, corroborated by the evolution of theoretical predictions towards weak coupling. This is a significant progress. It will incentivize new research to gain further understanding of electron–ion coupling in nonequilibrium Warm Dense Matter.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1089 ","pages":"Pages 1-55"},"PeriodicalIF":23.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics ReportsPub Date : 2024-08-22DOI: 10.1016/j.physrep.2024.08.001
Can Chen , Xu-Wen Wang , Yang-Yu Liu
{"title":"Stability of ecological systems: A theoretical review","authors":"Can Chen , Xu-Wen Wang , Yang-Yu Liu","doi":"10.1016/j.physrep.2024.08.001","DOIUrl":"10.1016/j.physrep.2024.08.001","url":null,"abstract":"<div><p>The stability of ecological systems is a fundamental concept in ecology, which offers profound insights into species coexistence, biodiversity, and community persistence. In this article, we provide a systematic and comprehensive review on the theoretical frameworks for analyzing the stability of ecological systems. Notably, we survey various stability notions, including linear stability, sign stability, diagonal stability, D-stability, total stability, sector stability, and structural stability. For each of these stability notions, we examine necessary or sufficient conditions for achieving such stability and demonstrate the intricate interplay of these conditions on the network structures of ecological systems. We further discuss the stability of ecological systems with higher-order interactions.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1088 ","pages":"Pages 1-41"},"PeriodicalIF":23.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physics ReportsPub Date : 2024-08-05DOI: 10.1016/j.physrep.2024.07.001
Loris Maria Cangemi , Chitrak Bhadra , Amikam Levy
{"title":"Quantum engines and refrigerators","authors":"Loris Maria Cangemi , Chitrak Bhadra , Amikam Levy","doi":"10.1016/j.physrep.2024.07.001","DOIUrl":"10.1016/j.physrep.2024.07.001","url":null,"abstract":"<div><p>Engines are systems and devices that convert one form of energy into another, typically into a more useful form that can perform work. In the classical setup, physical, chemical, and biological engines largely involve the conversion of heat into work. This energy conversion is at the core of thermodynamic laws and principles and is codified in textbook material. In the quantum regime, however, the principles of energy conversion become ambiguous, since quantum phenomena come into play. As with classical thermodynamics, fundamental principles can be explored through engines and refrigerators, but, in the quantum case, these devices are miniaturized and their operations involve uniquely quantum effects. Our work provides a broad overview of this active field of quantum engines and refrigerators, reviewing the latest theoretical proposals and experimental realizations. We cover myriad aspects of these devices, starting with the basic concepts of quantum analogs to the classical thermodynamic cycle and continuing with different quantum features of energy conversion that span many branches of quantum mechanics. These features include quantum fluctuations that become dominant in the microscale, non-thermal resources that fuel the engines, and the possibility of scaling up the working medium’s size, to account for collective phenomena in many-body heat engines. Furthermore, we review studies of quantum engines operating in the strong system–bath coupling regime and those that include non-Markovian phenomena. Recent advances in thermoelectric devices and quantum information perspectives, including quantum measurement and feedback in quantum engines, are also presented.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1087 ","pages":"Pages 1-71"},"PeriodicalIF":23.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}