Nano TodayPub Date : 2025-04-04DOI: 10.1016/j.nantod.2025.102746
Bingqing Yao , Chaokai Xu , Yaxin Tang , Yankun Du , Shengdong Tan , Sheng Dai , Guangfu Luo , Qian He
{"title":"Harnessing Zn-volatility for compositional tuning in PtZn nanoalloy catalysts","authors":"Bingqing Yao , Chaokai Xu , Yaxin Tang , Yankun Du , Shengdong Tan , Sheng Dai , Guangfu Luo , Qian He","doi":"10.1016/j.nantod.2025.102746","DOIUrl":"10.1016/j.nantod.2025.102746","url":null,"abstract":"<div><div>Bimetallic nanoalloys have gained extensive attention due to their tunable properties and wide range of catalytic applications. However, achieving good compositional control in nanoalloy catalysts remains a formidable challenge. In this work, we demonstrate that heat treatment can be used to tune the composition of Pt-Zn nanoalloy catalysts, leveraging the volatile nature of zinc to enhance their performance in propane dehydrogenation. Through identical location scanning transmission electron microscopy (IL-STEM) using an <em>in situ</em> gas cell, as well as other complementary techniques, we observed that the zinc content of the Pt-Zn nanoalloy particles can be tuned <em>via</em> heat treatment under hydrogen. The extent of change appeared to be influenced by experimental details such as the original composition of the particles, as well as heat treatment conditions such as temperature and flow rate. Our experimental results, supported by theoretical calculations, suggest that Zn volatilization can be controlled when the alloys reach certain compositions such as the intermetallic phase. This approach offers a new strategy for developing better Pt-Zn catalysts.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"63 ","pages":"Article 102746"},"PeriodicalIF":13.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143777029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TodayPub Date : 2025-04-04DOI: 10.1016/j.nantod.2025.102750
Di Zhao , Aifang Zhou , Tengfei Zhang , Chen Han , Hong-Min Meng , Yuehe Lin , Zhaohui Li
{"title":"Building high-contrast afterglow nanoprobe using semiconducting polymer nanoparticles and CuRu nanozyme for prolonged surgical navigation","authors":"Di Zhao , Aifang Zhou , Tengfei Zhang , Chen Han , Hong-Min Meng , Yuehe Lin , Zhaohui Li","doi":"10.1016/j.nantod.2025.102750","DOIUrl":"10.1016/j.nantod.2025.102750","url":null,"abstract":"<div><div>Precise real-time imaging of tumor boundary is critical for effectively and thoroughly eliminating tumor residuals during surgery to prevent recurrence. Organic afterglow luminescent probes, well known for their high signal-to-background ratio (SBR), are particularly promising for imaging <em>in vivo</em>. However, current afterglow imaging systems still face limitations in surgical navigation: \"always-on\" probes offer poor contrast between the tumor area and surrounding normal tissues, and lack the enduring imaging capability needed for complete tumor excision. In this work, we developed a novel tumor microenvironment-activated afterglow nanoprobe, denoted as FMCR, by integrating the semiconducting polymer 2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene (MEHPPV) with CuRu nanozyme for enhanced intravital afterglow imaging. The CuRu nanozyme component of FMCR exhibits robust catalase-like activity, continuously catalyzing the conversion of overexpressed hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) present in the tumor microenvironment to oxygen (O<sub>2</sub>), which increased the aerobic afterglow signal distinctly. More importantly, this CuRu nanozyme could sustainably and stably produce O<sub>2</sub> by catalyzing endogenous H<sub>2</sub>O<sub>2</sub> over the long term, greatly prolonging the decay time of afterglow imaging. <em>In vivo</em> experiments revealed that FMCR facilitated the imaging of subcutaneously xenografted 4T1 tumors in living mice, with a remarkable SBR of 20.18. Furthermore, guided by afterglow imaging of FMCR, surgery was performed to effectively remove intraperitoneal tumor nodules, including those as smaller as 2–4.5 mm in diameter, which demonstrated the immense potential of FMCR for precise surgical navigation.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"63 ","pages":"Article 102750"},"PeriodicalIF":13.2,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143768087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corneal endothelial dysfunction treatments: Recent advances in non-invasive treatment strategies","authors":"Nataliia Gnyliukh , Rabah Boukherroub , Sabine Szunerits","doi":"10.1016/j.nantod.2025.102740","DOIUrl":"10.1016/j.nantod.2025.102740","url":null,"abstract":"<div><div>The corneal endothelium plays an essential role in the maintenance of a healthy vision. However, in contrast to epithelial cells with high proliferation rates and a turnover lifespan of six to seven days that allows maintenance of constant cell density and high control of cell adhesion, human corneal endothelial cells (HCECs) do not normally proliferate. Therefore, loss of HCECs density over time leads to corneal transparency loss, and the development of corneal edema, bullous keratopathy and other eye diseases. Developments for repairing HCECs are continuously searched for and are evolving around possible topical drug applications as well as emerging strategies such as CRISPR-Cas9 gene editing, antisense oligonucleotides (ASOs) and nanotechnological concepts. Here, the state-of-the-art treatment strategies for corneal endothelial diseases (e.g. Fuch's endothelial corneal dystrophy (FECD), corneal edema, bullous keratopathy) will be outlined with a special focus on where topical applications have shown positive therapeutic outcomes.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"63 ","pages":"Article 102740"},"PeriodicalIF":13.2,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143747399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TodayPub Date : 2025-04-02DOI: 10.1016/j.nantod.2025.102737
Suleixin Yang , Ruie Chen , Peng Hua , Yi Wu , Meiwan Chen
{"title":"Integrating autophagy inhibition and ROS clearance in biohybrid nanoparticles for low-temperature cancer photothermal therapy","authors":"Suleixin Yang , Ruie Chen , Peng Hua , Yi Wu , Meiwan Chen","doi":"10.1016/j.nantod.2025.102737","DOIUrl":"10.1016/j.nantod.2025.102737","url":null,"abstract":"<div><div>Photothermal therapy (PTT) demands efficient cancer ablation at relative low temperatures and minimal thermal damage to normal tissues, but suffers from both the protective autophagy-related thermal resistance in cancer cell and reactive oxygen species (ROS)-induced damage to normal cells. Here, we screened out curcumin-Fe ultrasmall nanoparticles (Cur-Fe) that manifested efficient photothermal conversion efficiency (η = 43.38 %) and ROS scavenging ability. Additionally, CRISPR/Cas9 plasmids (pCas-ATG5/ATG7) were also constructed to safely and precisely knockdown the protective autophagy for thermal resistance alleviation. The core Cur-Fe/ATG@<sup>TK</sup>PF (CFA@T), which was composed of anionic <u>C</u>ur-<u>F</u>e and pCas-<u>A</u>TGs, was encapsulated by cationic thioketal-crosslinked and fluorinated polyethyleneimine (<sup><u>T</u>K</sup>PF) via electrostatic interaction. Further, CFA@TC was formed by CFA@T coated with an acidic pH-responsive shell OH<u>C</u>-PEG-CHO via Schiff base. Attributed to its dual responsiveness to pH and ROS, CFA@TC exhibited efficient tumor targeting and uptake following intravenous injection. Upon irradiation with a 652 nm laser, CFA@TC demonstrated enhanced efficacy in eradicating cancer cells by inhibiting autophagy, while concurrently mitigating inflammatory responses through intracellular ROS scavenging <em>in vivo</em> and <em>in vitro</em>. Taken together, our study provides a proof-of-concept that CRISPR can be effective for autophagy inhibition, and its integration with ROS-induced inflammatory responses relief can further improve PTT.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"63 ","pages":"Article 102737"},"PeriodicalIF":13.2,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143747398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TodayPub Date : 2025-04-01DOI: 10.1016/j.nantod.2025.102731
Xiaoxue Xie , Jing Liu , Zhengjie Liu , Huiye Wei , Minzhao Lin , Gengjia Chen , Zhibo Liu , Mengyi He , Xinshuo Huang , Shuang Huang , Yunuo Wang , Ji Wang , Huijiuan Chen , Qi Chen , Xi Xie , Xintao Shuai
{"title":"Real-time ROS monitoring-guided tumor electrodynamic therapy using a metal microneedle array system","authors":"Xiaoxue Xie , Jing Liu , Zhengjie Liu , Huiye Wei , Minzhao Lin , Gengjia Chen , Zhibo Liu , Mengyi He , Xinshuo Huang , Shuang Huang , Yunuo Wang , Ji Wang , Huijiuan Chen , Qi Chen , Xi Xie , Xintao Shuai","doi":"10.1016/j.nantod.2025.102731","DOIUrl":"10.1016/j.nantod.2025.102731","url":null,"abstract":"<div><div>Currently, various strategies are employed to utilize reactive oxygen species (ROS) amplifiers in tumor therapy; Electrodynamic therapy (EDT) presents a promising modality for ROS amplification, as it can continuously produce substantial quantities of ROS independent of endogenous sources, thereby demonstrating potential antitumor activity. Nonetheless, achieving prolonged tumor suppression with EDT remains a significant challenge. Conventional EDT approaches frequently encounter issues with inadequate overlap between the active electric field region and the drug distribution area, resulting in insufficient electrocatalytic action and uneven ROS distribution. Furthermore, individual physiological variability can lead to disparate therapeutic outcomes from identical drug dosages, and indiscriminate increases in ROS dosage may inadvertently exacerbate tumor invasion and metastasis. To address these challenges, we developed a microneedle (MN) array system that combines ROS sensing and enables precise EDT therapy. The integrated system offers multifunctional capabilities, including drug delivery, electrical stimulation, and real-time ROS sensing. Benefiting from the homogeneously distributed electric field provided by the MN array, we significantly enhanced the electrocatalytic performance of electrodynamic nanomedicines. The integrated system produces cell-toxic ROS at 2.4 times the rate of traditional methods and induces tumor cell apoptosis 2.6 times more effectively. Real-time ROS monitoring via sensing electrodes allows precise drug dosage adjustments, ensuring effective ROS amplification therapy while minimizing waste. Adding DON further boosts ROS accumulation and strengthens anti-tumor immunity. The miniaturized dual-power supply strategy, combining a constant current source with ROS signal collection, enhances clinical suitability, optimizing both therapeutic efficacy and precision in tumor treatment.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"63 ","pages":"Article 102731"},"PeriodicalIF":13.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143747528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TodayPub Date : 2025-03-31DOI: 10.1016/j.nantod.2025.102728
Jianlin Ge , Hu Chen , Yao Zhang , Longyi Zheng , Yanyu Miao , Jinyang Wang , Wenhui Wu , Yulun Chen , Xiaoyu An , Xuqi Peng , Minglei Teng , Hui Liu , Jianzhong Zhang , Chao Liu , Ping Xu , Gang Liu
{"title":"BCG emulsified in lipiodol expands tumor epitope profile to boost cancer immunotherapy","authors":"Jianlin Ge , Hu Chen , Yao Zhang , Longyi Zheng , Yanyu Miao , Jinyang Wang , Wenhui Wu , Yulun Chen , Xiaoyu An , Xuqi Peng , Minglei Teng , Hui Liu , Jianzhong Zhang , Chao Liu , Ping Xu , Gang Liu","doi":"10.1016/j.nantod.2025.102728","DOIUrl":"10.1016/j.nantod.2025.102728","url":null,"abstract":"<div><div>The limited shared antigens identified in cancers are insufficient as targets for universal immunotherapy, and the impaired major histocompatibility complex class I (MHC-I) expression, limited antigen exposure, and deficiency of immunogenicity lead to tumors evading immune surveillance. Here, we proposed a facile and effective BCG emulsion immunotherapy strategy that expands antigen exposure, increasing immune recognition, and boosting cancer immunotherapy. BCG emulsion, exhibiting efficient internalization in a non-fibronectin-dependent manner, reduced tumor growth, reprogrammed tumor microenvironment, and enhanced signaling pathways related to antigen processing and presentation. BCG emulsion can reverse the MHC-I downregulation, and peptide fragments from BCG-derived molecules are presented on the tumor cell surface by MHC-I. CD8<sup>+</sup> T cells recognize and are activated against these presented BCG epitopes identified by immunopeptideome. The BCG dominant epitope emulsion induced significant infiltration of CD8<sup>+</sup>T cells and dendritic cells in tumors. Overall, this study demonstrated for the first time the potential of BCG and BCG epitope administration in anti-cancer applications and provided new technological methods and ideas for cancer immunotherapy.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102728"},"PeriodicalIF":13.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143747702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TodayPub Date : 2025-03-30DOI: 10.1016/j.nantod.2025.102745
Ali Akbar Ashkarran
{"title":"Decentralized nanoparticle protein corona analysis may misconduct biomarker discovery","authors":"Ali Akbar Ashkarran","doi":"10.1016/j.nantod.2025.102745","DOIUrl":"10.1016/j.nantod.2025.102745","url":null,"abstract":"<div><div>Protein/biomolecular corona (PC) is a layer of biomolecules (mainly proteins) that forms around the nanoparticles (NPs) after exposure to biological environments (e.g., blood). The dynamic nature of the PC formation allows enrichment of specific proteins particularly low abundance proteins and enables capturing disease-specific proteins on the surface of the NPs for biomarker discovery. However, identification of crucial proteins with high diagnostic values heavily depends on liquid chromatography mass spectrometry (LC-MS/MS) approach due to its sensitivity and specificity. Despite the widespread use of MS, there exist potential pitfalls in NPs’ PC analysis that may lead to misconduct in biomarker discovery studies. This opinion considers these pitfalls, providing insights into the challenges and strategies to mitigate misconduct in biomarker discovery using mass spectrometry techniques.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102745"},"PeriodicalIF":13.2,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143734554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TodayPub Date : 2025-03-29DOI: 10.1016/j.nantod.2025.102739
Xiaoru Zhang , Shuiling Wen , Qin Liu , Wenli Cai , Keke Ning , Han Liu , Ergang Liu , Yongzhuo Huang , Feng Zeng
{"title":"Multi-functional nanozyme-integrated astragalus polysaccharide hydrogel for targeted phased therapy in diabetic wound healing","authors":"Xiaoru Zhang , Shuiling Wen , Qin Liu , Wenli Cai , Keke Ning , Han Liu , Ergang Liu , Yongzhuo Huang , Feng Zeng","doi":"10.1016/j.nantod.2025.102739","DOIUrl":"10.1016/j.nantod.2025.102739","url":null,"abstract":"<div><div>Diabetic wounds (DW) are characterized by excessive oxidative stress, chronic inflammation, hypoxia, impaired angiogenesis, weakened antioxidant defenses, and disrupted collagen remodeling, all of which delay healing and compromise tissue integrity. To address these challenges, we developed a biodegradable multifunctional hydrogel dressing (Fe/Ce@APS Gel) comprised of astragalus polysaccharide (APS), polyvinyl alcohol (PVA), and borax, functionalized with multi-enzyme mimetic nanozyme iron-modified ceria nanoparticles (Fe/CeNP-PEG). This Fe/Ce@APS Gel demonstrates potent anti-inflammatory, antioxidant, oxygenation, and pro-angiogenic properties, supporting wound healing across all stages. In the initial bleeding phase, the dressing accelerates blood clotting, promoting rapid wound stabilization. During the inflammatory phage, Fe/CeNP-PEG and APS effectively reduces excess reactive oxygen species (ROS) generates oxygen, modulates macrophage polarization, and mitigates inflammatory responses. In the proliferative phase, APS enhances cell proliferation, stimulates angiogenesis, and accelerates granulation tissue formation, supporting tissue repair. Finally, in the remodeling phase, Fe/Ce@APS Gel aids in tissue architecture reconstruction, strengthening wound integrity. Mechanistically, Fe/Ce@APS Gel facilitates DW healing by inhibiting the NLRP3/NF-κB signaling pathway, thereby reducing inflammation. The synergistic effects of APS and Fe/CeNP-PEG underscore the potential of Fe/Ce@APS Gel as a promising therapeutic dressing for DW treatment.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102739"},"PeriodicalIF":13.2,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143734555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TodayPub Date : 2025-03-28DOI: 10.1016/j.nantod.2025.102742
Shengke Zhao , Yunjian Yu , Youtao Xin , Hegang Lu , Xiaohui Li , Shuyu Wang , Feihe Ma , Hui Gao
{"title":"Oral delivery of Clostridium butyricum using selective antibacterial lipids for enhanced treatment of Fusobacterium nucleatum-associated intestinal diseases","authors":"Shengke Zhao , Yunjian Yu , Youtao Xin , Hegang Lu , Xiaohui Li , Shuyu Wang , Feihe Ma , Hui Gao","doi":"10.1016/j.nantod.2025.102742","DOIUrl":"10.1016/j.nantod.2025.102742","url":null,"abstract":"<div><div>The gut microbiota plays a crucial role in host immune modulation and maintaining homeostasis. An abnormal increase in certain pathogens such as <em>Fusobacterium nucleatum</em> (<em>Fn</em>) can break homeostasis and drive the progression of various intestinal diseases. Supplementing probiotics can partially counteract these effects without flora disturbance. However, broad-spectrum antibacterial treatments are not compatible with probiotic therapy in a therapeutic system due to their non-selective damage on both probiotics and the overall gut microbiota. Herein, we screen and identify lauric acid (LA)-derived lipid, S12, from a combinatorial library of 12 chemically diverse lipids for its selective antibacterial activity against <em>Fn</em> over probiotic <em>Clostridium butyricum</em> (<em>Cb</em>). This lipid is then utilized as a single-cell carrier to orally deliver <em>Cb</em> (<em>Cb</em>@S12) for enhanced treatment of <em>Fn</em>-associated intestinal diseases. The surface arming of S12 effectively protects <em>Cb</em> from simulated gastric and intestinal fluids, thus significantly prolonging its intestinal retention in mice. Oral administration of <em>Cb</em>@S12 has demonstrated impressive therapeutic outcomes against <em>Fn</em>-aggravated inflammatory bowel disease and orthotopic colorectal cancer by selectively eliminating <em>Fn</em> while preserving the probiotic activity of <em>Cb</em>. This study introduces a robust approach using selectively antibacterial lipids for probiotic encapsulation, offering an antibiotic-free “probiotic-antagonistic” combination therapeutic strategy for intestinal diseases.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102742"},"PeriodicalIF":13.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143724654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano TodayPub Date : 2025-03-28DOI: 10.1016/j.nantod.2025.102730
Yang Cao , Yan Liu , Xiaoying Shang , Yao Lin , Lushan Lin , Ni Zhang , Hang Gao , Xueyuan Chen
{"title":"Full-color circularly polarized luminescence from perovskite quantum dots embedded within Chiral ZIF-8 matrix","authors":"Yang Cao , Yan Liu , Xiaoying Shang , Yao Lin , Lushan Lin , Ni Zhang , Hang Gao , Xueyuan Chen","doi":"10.1016/j.nantod.2025.102730","DOIUrl":"10.1016/j.nantod.2025.102730","url":null,"abstract":"<div><div>The exploration of circularly polarized luminescence (CPL) materials based on perovskite quantum dots (PeQDs) has garnered significant interest across various disciplines owing to their extensive potential in optical applications. However, conventional perovskite-based CPL materials frequently encounter formidable challenges, including complex fabrication processes, limited emission bandwidths, inevitable anion exchange, and aggregation-induced quenching. To address these challenges, we proposed a unique approach to develop solid-state CPL nanohybrids with superior full-color CPL by integrating CsPbX<sub>3</sub> (X = Cl, Br, I) PeQDs into amino acid co-assembled chiral metal-organic frameworks (CMOFs). By in situ generating PeQDs within L/D-ZIF-8 CMOFs, we achieved solid-state CPL nanohybrids (L/D-ZIF-8⊃PeQDs) that exhibited enhanced CPL properties and stability. The chiral microenvironment provided by the CMOFs not only boosts CPL performance but also effectively mitigates issues such as anion exchange and aggregation-induced quenching. More intriguingly, such nanohybrids displayed tunable CPL emissions across the entire visible spectrum, achieving a maximum dissymmetry factor (<em>g</em><sub>lum</sub>) value of 1.41 × 10<sup>−3</sup> and a photoluminescence quantum yield of up to 13 %. Furthermore, we showcased their proof-of-concept application by fabricating circularly polarized red-green-blue and white light-emitting diodes with an impressive color gamut exceeding 137 % NTSC, thereby unveiling the significance of our approach in promoting CPL functionalities of perovskite-based materials.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102730"},"PeriodicalIF":13.2,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143714656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}