Nano Today最新文献

筛选
英文 中文
Mitochondria-targeting near-infrared (NIR) materials orchestrating the symphony of precision diagnosis and therapy 线粒体靶向近红外(NIR)材料为精准诊断和治疗奏响交响曲
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-09 DOI: 10.1016/j.nantod.2024.102478
Shu Gao , Chunrong Qu , Jun Wang , Kun Qian , Zhen Cheng
{"title":"Mitochondria-targeting near-infrared (NIR) materials orchestrating the symphony of precision diagnosis and therapy","authors":"Shu Gao ,&nbsp;Chunrong Qu ,&nbsp;Jun Wang ,&nbsp;Kun Qian ,&nbsp;Zhen Cheng","doi":"10.1016/j.nantod.2024.102478","DOIUrl":"10.1016/j.nantod.2024.102478","url":null,"abstract":"<div><p>Mitochondria are essential for maintaining cellular survival and function, and their dysfunction is implicated in cancer, cardiovascular abnormalities, neurodegenerative diseases, aging, and so on, carrying significant pathophysiological implications. Conducting research focused on mitochondria helps elucidate the mechanisms of disease development and offers new therapeutic perspectives for combating challenging conditions like malignant tumors, myocardial injury, Parkinson's disease, and other related ailment. In recent years, the flourishing development of near-infrared (NIR) technology has provided powerful tools for mitochondrial research. NIR light serves as both an information carrier for biological imaging and analysis, and as a non-invasive stimulus in drug delivery, phototherapy, and energy conversion applications. Currently, a large number of NIR materials have been applied to target mitochondria in disease diagnosis, treatment, and theranostics. These materials have garnered significant attention due to their unique properties and remarkable in vivo performance. This review aims to provide researchers developing mitochondria-targeted NIR materials for biomedical applications with an advanced and comprehensive guide. It not only offers valuable insights into design strategies, material properties, and applications in disease diagnosis and treatment, such as strategies to improve imaging sensitivity, specificity, and therapeutic efficacy, but also delves into the existing challenges in the field, issues that persist in clinical translation, and future prospects.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102478"},"PeriodicalIF":13.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced cytosolic RNA delivery through early endosome fusion-mediated release via probiotic-derived lipopolysaccharide (LPS)-incorporated vesicles 通过源自益生菌的脂多糖(LPS)包裹囊泡的早期内质体融合介导的释放,增强细胞膜 RNA 的传输
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-09 DOI: 10.1016/j.nantod.2024.102480
Di Nie , Yishan Lv , Duo Gao , Anqi Xu , Qinyu Li , Jiaxin Li , Xiang Lu , Bingqi Wang , Jie Wang , Chang Liu , Zhuan Zhang , Xiang Li , Ning Wang , Shiyan Guo , Chunliu Zhu , Miaorong Yu , Yong Gan
{"title":"Enhanced cytosolic RNA delivery through early endosome fusion-mediated release via probiotic-derived lipopolysaccharide (LPS)-incorporated vesicles","authors":"Di Nie ,&nbsp;Yishan Lv ,&nbsp;Duo Gao ,&nbsp;Anqi Xu ,&nbsp;Qinyu Li ,&nbsp;Jiaxin Li ,&nbsp;Xiang Lu ,&nbsp;Bingqi Wang ,&nbsp;Jie Wang ,&nbsp;Chang Liu ,&nbsp;Zhuan Zhang ,&nbsp;Xiang Li ,&nbsp;Ning Wang ,&nbsp;Shiyan Guo ,&nbsp;Chunliu Zhu ,&nbsp;Miaorong Yu ,&nbsp;Yong Gan","doi":"10.1016/j.nantod.2024.102480","DOIUrl":"10.1016/j.nantod.2024.102480","url":null,"abstract":"<div><p>Achieving efficient and secure cytosolic delivery is crucial for RNA therapeutics. Presently, delivery systems predominantly attain cytosolic release through membrane rupture or destabilization of late endosomes and lysosomes. However, these approaches lead to restricted RNA release and undesirable cytotoxicity, ultimately diminishing therapeutic efficacy. Herein, we proposed an efficient strategy based on early endosome fusion-mediated release, employing probiotic-derived lipopolysaccharide (LPS)-incorporated vesicles to enhance RNA delivery. The LPS is derived from Escherichia coli Nissle 1917 (EcN) and has a high safety confirmed by the authoritative pyrogen test. The LPS-rich outer membrane vesicles (OMVs) and synthetic chimeric liposomes (LPS-Lips) are found capable of efficient cytosolic RNA delivery by using LPS to fuse with early endosomes, as evidenced by super-resolution and real-time imaging. The OMVs and LPS-Lips (containing 10 % and 30 % EcN-derived LPS) exhibit enhanced ability to deliver functional BCL-xL siRNA, leading to more significant gene silencing and cell apoptosis in comparison to the commercial Lipofectamine 2000 and RNAiMAX groups. The <em>in vivo</em> results demonstrate their superior efficacy on inhibiting tumor growth and prolonged survival time with enhanced safety. These findings highlight the early endosome fusion strategy with facilitated release efficiency and safety, offering guidelines for the rational design of enhanced RNA delivery systems.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102480"},"PeriodicalIF":13.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple-pathway cGAS-STING activation collaborated with ferroptosis-induced immunogenic cell death for boosting systemic colorectal cancer immunotherapy 三重通路 cGAS-STING 激活与铁变态反应诱导的免疫原性细胞死亡协同促进全身性结直肠癌免疫疗法
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-07 DOI: 10.1016/j.nantod.2024.102484
Shaopeng Zhang , Hao Zhang , Yue Cao , Shiqi Bai , Wei Li , Peizhe Song , Bin Wang , Ziqian Wang , Daguang Wang , Hongjie Zhang , Yinghui Wang
{"title":"Triple-pathway cGAS-STING activation collaborated with ferroptosis-induced immunogenic cell death for boosting systemic colorectal cancer immunotherapy","authors":"Shaopeng Zhang ,&nbsp;Hao Zhang ,&nbsp;Yue Cao ,&nbsp;Shiqi Bai ,&nbsp;Wei Li ,&nbsp;Peizhe Song ,&nbsp;Bin Wang ,&nbsp;Ziqian Wang ,&nbsp;Daguang Wang ,&nbsp;Hongjie Zhang ,&nbsp;Yinghui Wang","doi":"10.1016/j.nantod.2024.102484","DOIUrl":"10.1016/j.nantod.2024.102484","url":null,"abstract":"<div><p>Immunotherapy for advanced colorectal cancer has made the considerable progress. However, the most patients have unsatisfactory immune response due to immunosuppressive tumor microenvironment (TME). We construct a hyaluronic acid (HA) functionalized nanoplatform (MnOx@MIL-100@CDDP@HA, MMCH) with MnOx as core and MIL-100 as shell for loading cisplatin to boost the antitumor immune response by the synergistic effect of activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway and ferroptosis-induced immunogenic cell death. MMCH could achieve the TME-responsive CDDP release and alleviating tumor hypoxia, which effectively increased the damage of nuclear DNA (nDNA) to improve the efficacy of chemotherapy. The abilities of consuming GSH and producing ·OH of MMCH could cause ferroptosis, further induced immunogenic cell death (ICD), result in boosting an adaptive immune response. The generated ROS and CDDP caused damage to nDNA and mitochondrial DNA (mitoDNA), and further initiated the cGAS-STING pathway to trigger innate immune, which could be enhanced by Mn<sup>2+</sup> via improving sensitivity of cGAS to dsDNA. The activation of adaptive and innate immune response could result in an excellent antitumor immunity response and long-lasting immunological memory, remarkably impede primary tumor growth and relapse in vitro and vivo. Therefore, this strategy of provoking cGAS-STING pathway and inducing ferroptosis has a promising potential to induce adaptive and innate immune response for boosting colorectal cancer immunotherapy.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102484"},"PeriodicalIF":13.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomically dispersed nickel-bismuth dual-atom sites for high rate electrochemical CO2 reduction 用于高速电化学二氧化碳还原的原子分散镍铋双原子位点
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-07 DOI: 10.1016/j.nantod.2024.102477
Xiaoxiong Huang , Shengli Wu , Zhichang Xiao , Linjie Zhi , Bin Wang
{"title":"Atomically dispersed nickel-bismuth dual-atom sites for high rate electrochemical CO2 reduction","authors":"Xiaoxiong Huang ,&nbsp;Shengli Wu ,&nbsp;Zhichang Xiao ,&nbsp;Linjie Zhi ,&nbsp;Bin Wang","doi":"10.1016/j.nantod.2024.102477","DOIUrl":"10.1016/j.nantod.2024.102477","url":null,"abstract":"<div><p>We report a diatomic-site catalyst configuration constituted by Ni-N<sub>3</sub> and Bi-N<sub>4</sub> embedded in ultrathin nitrogenated carbon nanosheets (Ni/Bi-N-C) which showed dramatically improved activity and selectivity for the conversion of CO<sub>2</sub> to CO. Specifically, the catalyst exhibited high CO Faradaic efficiency (FE<sub>CO</sub>) of above 90 % over a wide potential window from −0.76 to −2.22 versus reversible hydrogen electrode with the maximum CO partial current density up to 312 mA cm<sup>−2</sup> in a flow cell, and coupled with robust durability. Ni/Bi-N-C-based membrane electrode assembly (MEA) device presented ultrahigh FE<sub>CO</sub> of 95.7 % at 750 mA and over 100 h of continuous operation without decay under constant current density of 100 mA cm<sup>−2</sup>. Mechanistic studies and density functional theory calculations reveal that regulating the CO<sub>2</sub>RR catalytic performance via nearby Ni and Bi active sites can potentially break the activity benchmark of the single metal counterparts because the neighboring Ni and Bi active sites work in synergy to decrease the reaction barrier for the formation of *COOH and desorption of *CO. This work presents an efficient combination of two metal atomic sites which was designed by optimizing the interaction between the atomic sites and key reaction intermediates, resulting in the high-rate electrocatalytic CO<sub>2</sub> reduction.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102477"},"PeriodicalIF":13.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular vesicles-based “all-in-one” vaccine platform triggers mucosal immunity against respiratory viruses 基于细胞囊泡的 "多合一 "疫苗平台可触发针对呼吸道病毒的黏膜免疫力
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-06 DOI: 10.1016/j.nantod.2024.102473
Yanrong Gao , Jie Zhu , Jimao Zhai , Ante Ou , Baoru Fan , Han Wu , Abbaskhan Turaev , Bahtiyor Muhitdinov , Huiyuan Wang , Yongzhuo Huang
{"title":"Cellular vesicles-based “all-in-one” vaccine platform triggers mucosal immunity against respiratory viruses","authors":"Yanrong Gao ,&nbsp;Jie Zhu ,&nbsp;Jimao Zhai ,&nbsp;Ante Ou ,&nbsp;Baoru Fan ,&nbsp;Han Wu ,&nbsp;Abbaskhan Turaev ,&nbsp;Bahtiyor Muhitdinov ,&nbsp;Huiyuan Wang ,&nbsp;Yongzhuo Huang","doi":"10.1016/j.nantod.2024.102473","DOIUrl":"10.1016/j.nantod.2024.102473","url":null,"abstract":"<div><p>Viruses transmitted through the respiratory tract tend to have short incubation periods and are highly contagious, thus being one of the main triggers of acute respiratory illnesses. Vaccines are important tools for reducing viral infections and preventing serious illness, hospitalization, and death. However, vaccines are still not widely accessible in some areas, particularly in low-income countries, because of limited production capacity and inadequate medical personnel, resulting in high morbidity and mortality rates during pandemics. Therefore, there is an urgent need for the development of vaccines that can be rapidly manufactured and self-administered in response to pandemics caused by respiratory-transmitted viruses. In this work, we developed an inhalable vaccine platform consisting of antigen-engineered cell membrane vesicles (CMVs) and cholesterolized CpG anchoring to the vesicle surface to establish an “all-in-one” vaccine platform (antigen/CpG-CMVs), which could induce mucosal immunity upon oropharyngeal inhalation to protect against viral infections in the respiratory tract. Its antigen, adjuvant, and particle size can be adjusted as needed through gene editing, cholesterol modification, and extrusion process, respectively. The lyophilized antigen/CpG-CMVs can be distributed without cold-chain transportation and can be self-administered by inhalation upon reconstitution. We found that this inhalable “all-in-one” vaccine induced not only systemic immunity but also mucosal immunity in the respiratory tract, as reflected by the enhanced levels of systemic immunoglobulin G (IgG) and respiratory secreted immunoglobulin A (sIgA). This work may validate engineered cell membrane vesicles as an inhalable vaccine platform and a promising avenue for future vaccine development to protect against pandemics.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102473"},"PeriodicalIF":13.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1748013224003293/pdfft?md5=9b3a93d9ca6099ec6916888f8ebaa52d&pid=1-s2.0-S1748013224003293-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungus-mediated biosynthesis of gold nanoparticles with synergistic antifungal activity against multidrug-resistant Candida albicans 真菌介导的具有协同抗真菌活性的金纳米粒子对耐多药白色念珠菌的作用
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-06 DOI: 10.1016/j.nantod.2024.102486
Ting Yu , Jinjie Hou , Farooq Hafeez , Pengfei Ge , Anlai Zou , Ying Fu , Jun Zhang , Yunlei Xianyu
{"title":"Fungus-mediated biosynthesis of gold nanoparticles with synergistic antifungal activity against multidrug-resistant Candida albicans","authors":"Ting Yu ,&nbsp;Jinjie Hou ,&nbsp;Farooq Hafeez ,&nbsp;Pengfei Ge ,&nbsp;Anlai Zou ,&nbsp;Ying Fu ,&nbsp;Jun Zhang ,&nbsp;Yunlei Xianyu","doi":"10.1016/j.nantod.2024.102486","DOIUrl":"10.1016/j.nantod.2024.102486","url":null,"abstract":"<div><p>The widespread prevalence of antifungal resistance results in the ineffective treatment of <em>Candida</em>-related infections since current approaches still heavily rely on antifungal drugs such as azoles. Adjuvant therapy is an alternative approach to alleviate this crisis that can re-sensitize multidrug-resistant (MDR) fungi to antifungal drugs. Herein, we report a synergistic strategy to restore antifungal activity of azoles against MDR <em>Candida albicans</em> (<em>C. albicans</em>) through nanotechnology. <em>C. albicans</em>-mediated biosynthetic gold nanoparticles (Ca_AuNPs) exhibit a significant potentiating effect (16–32 folds) on azoles (including fluconazole, itraconazole, and voriconazole) against MDR <em>C. albicans</em>. Mechanistic studies demonstrate that Ca_AuNPs can promote the intracellular accumulation of fluconazole and trigger the biochemical processes including cell structure destruction, membrane potential dissipation, intracellular ROS generation, and ATP level reduction to overcome the fungal intrinsic resistance. We demonstrate that the adjuvant therapy significantly reduces fungal viability and enhances vaginal mucosa regeneration when treating <em>Candida</em> vaginitis-infected mice. This study reveals the potential of biosynthetic nanoparticles as novel adjuvants to extend the lifespan of existing antifungal drugs for the treatment of MDR pathogen-induced infections.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102486"},"PeriodicalIF":13.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lattice matching propels customized-dimensionality 2D/3D perovskite heterojunctions for high-performance photovoltaics 晶格匹配推动定制维度的二维/三维包晶异质结实现高性能光伏技术
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-05 DOI: 10.1016/j.nantod.2024.102479
Yuncai Liang , Junmin Xia , Baojin Fan , Chao Liang , Fangfang Yuan , Sihui Peng , Qihang Sun , Rudai Zhao , Zhipeng Miao , Ting Zhang , He Zhu , Wenlong Liang , Yunhang Xie , Shufen Chen , Xiaotian Hu , Yiqiang Zhang , Pengwei Li , Yanlin Song
{"title":"Lattice matching propels customized-dimensionality 2D/3D perovskite heterojunctions for high-performance photovoltaics","authors":"Yuncai Liang ,&nbsp;Junmin Xia ,&nbsp;Baojin Fan ,&nbsp;Chao Liang ,&nbsp;Fangfang Yuan ,&nbsp;Sihui Peng ,&nbsp;Qihang Sun ,&nbsp;Rudai Zhao ,&nbsp;Zhipeng Miao ,&nbsp;Ting Zhang ,&nbsp;He Zhu ,&nbsp;Wenlong Liang ,&nbsp;Yunhang Xie ,&nbsp;Shufen Chen ,&nbsp;Xiaotian Hu ,&nbsp;Yiqiang Zhang ,&nbsp;Pengwei Li ,&nbsp;Yanlin Song","doi":"10.1016/j.nantod.2024.102479","DOIUrl":"10.1016/j.nantod.2024.102479","url":null,"abstract":"<div><p>2D/3D perovskite heterojunctions typically yield mixed-phase 2D perovskites, generating multiple quantum wells that impede charge transfer, thereby limiting the potential enhancement of solar cell efficiency. Here, we successfully fabricated phase-pure 2D (n = 2)/3D perovskite heterojunctions via introducing the γ-aminobutyric acid (GABA) ligand, which minimized energetic inhomogeneity, thus favoring interfacial charge transfer through optimized energy band alignment. The ligation between the oxygen atoms in the ligand and the uncoordinated lead in the 3D perovskite triggered a structural transition from cubic to tetragonal at the 3D perovskite surface, ensuring a seamless lattice matching with the 2D perovskite (n = 2), resulting in this optimized configuration. Utilizing this innovative structural configuration, the carrier properties of 2D/3D perovskite thin films have been significantly enhanced, exhibiting diffusion lengths exceeding 1000 nm and a mobility of 3.35 cm² V⁻¹ s⁻¹. Consequently, the fabricated small-area perovskite solar cells exhibited an impressive power conversion efficiency (PCE) of 25.06 %, while the mini-modules (10 cm × 10 cm) attained a maximum PCE of 17.27 %. Furthermore, the passivation of the 2D perovskite layers, coupled with their inherent superior resistance, enabled the unencapsulated target device to maintain outstanding long-term stability, even under challenging environmental conditions of light, heat, and humidity.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102479"},"PeriodicalIF":13.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-assembled niobium-MXene integrated frameworks for accelerated bone repair and osseointegration 用于加速骨修复和骨整合的超组装铌-MXene 集成框架
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-05 DOI: 10.1016/j.nantod.2024.102471
Derong Xu , Ya Li , Ying Ye , Ming Gao , Yuanzhi Zhang , Yufeng Che , Sisi Xie , Linli Cai , Kaiwen Chen , Yujie Yang , Yingjie Chen , Xinming Geng , Shan Zhou , Bing Yu , Runhao Zhang , Meng Qiu , Yunlong Yang , Biao Kong , Chuanli Zhou
{"title":"Super-assembled niobium-MXene integrated frameworks for accelerated bone repair and osseointegration","authors":"Derong Xu ,&nbsp;Ya Li ,&nbsp;Ying Ye ,&nbsp;Ming Gao ,&nbsp;Yuanzhi Zhang ,&nbsp;Yufeng Che ,&nbsp;Sisi Xie ,&nbsp;Linli Cai ,&nbsp;Kaiwen Chen ,&nbsp;Yujie Yang ,&nbsp;Yingjie Chen ,&nbsp;Xinming Geng ,&nbsp;Shan Zhou ,&nbsp;Bing Yu ,&nbsp;Runhao Zhang ,&nbsp;Meng Qiu ,&nbsp;Yunlong Yang ,&nbsp;Biao Kong ,&nbsp;Chuanli Zhou","doi":"10.1016/j.nantod.2024.102471","DOIUrl":"10.1016/j.nantod.2024.102471","url":null,"abstract":"<div><p>Niobium is attracting more and more attention in dental and orthopedic clinical applications. On the one hand, niobium alloy has verified its good biocompatibility, corrosion resistance and mechanical properties; on the other hand, niobium nanomaterials could reduce the osteoclast activation through ROS absorption, which is conducive to bone tissue regeneration. The impressive osteogenesis ability of niobium-based nanomaterials inspired the strategy to load the 2D niobium into bioactive responsive carriers and directly deploy in bone defects to promote bone regeneration efficiently and in situ. Here, a bone cement was constructed through the innovative super-assembled strategy that had integrated the nano-level 2D niobium carbide MXene to the macroscopic 3D GelMA photo-cured frameworks. The super-assembled bone cement can achieve accelerated bone fracture healing and osseointegration in various preclinical mouse models without any detectable toxicity. Mechanistically, 2D Nb<sub>2</sub>C bone cement promoted osteoblast activation without altering osteoclast function in vivo. Transcriptomics and chromatin immunoprecipitation revealed that 2D Nb<sub>2</sub>C stimulates GATA3-GPNMB signaling to active osteoblasts in mice. In freshly isolated human osteoblasts, 2D Nb<sub>2</sub>C stimulated osteoblast activation and calcification. This work proposes a topically effective, non-toxic, low-cost 2D Nb<sub>2</sub>C-based bone cement with distinct clinical translational potential in dentistry and orthopedics.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102471"},"PeriodicalIF":13.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD13-targeting and TRAIL-displaying protein nanoparticles effectively induce apoptotic cell death of acute myeloid leukemia, prolonging survival in mouse models CD13 靶向和 TRAIL 显示蛋白纳米粒子能有效诱导急性髓性白血病细胞凋亡,延长小鼠模型的存活时间
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-04 DOI: 10.1016/j.nantod.2024.102474
Heejin Jun , Mirae Yeo , Jun Pyo Jeon , Soomin Eom, Hyo Jeong Kim, Yunjung Kim, Eunjung Jang, Sung Ho Park, Eunhee Kim, Sebyung Kang
{"title":"CD13-targeting and TRAIL-displaying protein nanoparticles effectively induce apoptotic cell death of acute myeloid leukemia, prolonging survival in mouse models","authors":"Heejin Jun ,&nbsp;Mirae Yeo ,&nbsp;Jun Pyo Jeon ,&nbsp;Soomin Eom,&nbsp;Hyo Jeong Kim,&nbsp;Yunjung Kim,&nbsp;Eunjung Jang,&nbsp;Sung Ho Park,&nbsp;Eunhee Kim,&nbsp;Sebyung Kang","doi":"10.1016/j.nantod.2024.102474","DOIUrl":"10.1016/j.nantod.2024.102474","url":null,"abstract":"<div><p>Acute myeloid leukemia (AML) is a rapidly proliferating blood cancer, necessitating treatments that specifically target and swiftly eradicate it. In this study, we develop an AML-specific, apoptotic cell death-inducing protein nanoparticle, AaLS/TRAIL/aCD13Nb, by simultaneously displaying multiple CD13-binding nanobodies (aCD13Nb) and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) molecules on a single AaLS protein nanoparticle using the SpyCatcher/SpyTag protein ligation system. AaLS/TRAIL/aCD13Nb selectively binds to various CD13-overexpressing AML cell lines and effectively accumulates near U937 AML tumor sites through systemic administration, demonstrating its AML targeting capabilities. The tight binding of AaLS/TRAIL/aCD13Nb to CD13-overexpressing AML cells, mediated by aCD13Nb, results in close and continuous contact between TRAIL molecules and death receptors, triggering robust apoptotic cell death. Systemic administrations of AaLS/TRAIL/aCD13Nb into U937 AML-engrafted NSG mice significantly reduce the AML burden and nearly double the mice’s survival period, especially under advanced and severe AML conditions. Collectively, our study paves the way for targeted therapies in AML, utilizing protein nanoparticles as nanoplatforms. Substantial therapeutic efficacy across various cancers can be achieved by strategically combining cancer-specific targeting ligands with apoptotic cancer cell death-inducing molecules, tailored to specific cancer types.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102474"},"PeriodicalIF":13.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low modulus hydrogel-like elastomer sensors with ultra-fast self-healing, underwater self-adhesion, high durability/stability and recyclability for bioelectronics 低模量类水凝胶弹性体传感器,具有超快自愈合、水下自粘附、高耐久性/稳定性和可回收性,适用于生物电子学
IF 13.2 1区 材料科学
Nano Today Pub Date : 2024-09-03 DOI: 10.1016/j.nantod.2024.102469
Zhenlong Li , Huiru Xu , Zexing Deng , Baolin Guo , Jie Zhang
{"title":"Low modulus hydrogel-like elastomer sensors with ultra-fast self-healing, underwater self-adhesion, high durability/stability and recyclability for bioelectronics","authors":"Zhenlong Li ,&nbsp;Huiru Xu ,&nbsp;Zexing Deng ,&nbsp;Baolin Guo ,&nbsp;Jie Zhang","doi":"10.1016/j.nantod.2024.102469","DOIUrl":"10.1016/j.nantod.2024.102469","url":null,"abstract":"<div><p>Flexible sensors simultaneously with property of hydrogel-like low modulus/room temperature ultra-fast self-healing and with elastomer-like durability /environmental stability and underwater adhesion for bioelectronics has not been reported. A low modulus hydrogel-like elastomer that achieves ultrafast self-healing through molecular chain entanglement at room temperature was prepared based on furfuryl alcohol-modified poly(sebacate glyceride) (PGS) prepolymer, furfuryl alcohol-modified poly(ionic liquid) and bismaleimide by Diels-Alder (DA) reaction. The conductive elastomer-based flexible sensors exhibit hydrogel-like properties of low modulus (6.41 kPa) and ultra-fast self-healing (98 % self-healing efficiency within 5 s). The elastomer also possesses rapid subzero and underwater self-healing properties within 5 s. Moreover, PGS-0.2DA-0.2PIL exhibits pressure sensitive adhesive properties and can be adhered/re-adhered in water. The flexible sensor shows elastomer-like high durability, high environmental stability, multiple recyclability and reusability, and it exhibits wide detection ranges, fast response time, low hysteresis, anti-freezing, anti-bacterial and good biocompatibility. The flexible sensors can accurately identify micro-expressions/eye rotation, monitor human movement/health, detect ECG/EMG signals and control robotic arm movements. In conclusion, a new strategy for design of hydrogel-like conductive elastomers via molecular structure design is proposed, and the elastomers-based flexible sensors with low modulus, rapid self-healing and durability/environmental stability show great promising for bioelectronic applications.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102469"},"PeriodicalIF":13.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信