Ruonan Ye , Qiongzhe Ren , Limin Chang , Siqi Zhang , Changchang Deng , Li Cao , Meng Shi , Bo Lou , Fenghua Meng , Shi Du , Keyun Ren , Xijun Piao , Congcong Xu , Zhiyuan Zhong
{"title":"Administration route-commended concise organ-selective mRNA transfection (ACCOST) by cyclic disulfide-primed short polyethylenimine","authors":"Ruonan Ye , Qiongzhe Ren , Limin Chang , Siqi Zhang , Changchang Deng , Li Cao , Meng Shi , Bo Lou , Fenghua Meng , Shi Du , Keyun Ren , Xijun Piao , Congcong Xu , Zhiyuan Zhong","doi":"10.1016/j.nantod.2025.102741","DOIUrl":null,"url":null,"abstract":"<div><div>mRNA technology holds great promise for addressing a spectrum of diseases. Achieving widespread clinical utility of mRNA therapeutics requires effective transfection of mRNA to specific organs. Here we introduce a cyclic disulfide-primed short polyethyleneimine (CD-PEI) polymer that demonstrates administration route-commended concise organ-selective mRNA transfection (ACCOST) <em>in vivo</em>. The cyclic disulfide groups on the PEI polymer facilitate thiol-mediated cytosolic mRNA delivery and high transfection of different types of cells including hard-to-transfect immune cells. Remarkably, CD-PEI-mRNA complex achieves nearly 100 % organ-specific transfection in pancreas, lymph nodes, brain/spinal cord, and spleen <em>via</em> intraperitoneal, subcutaneous, intrathecal injection, and intravenous injections, respectively, with negligible accumulation in non-target organs. The intravenous injection to pregnant mice results in selective mRNA expression in the placenta instead. The spleen targeting occurs likely <em>via</em> erythrocyte-hijacking mechanism and systemically administered mRNA vaccines elicit robust antigen-specific anti-tumor immunity in murine B16-OVA model. Therefore, our ACCOST technology presents a novel strategy for organ-specific mRNA transfection.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"63 ","pages":"Article 102741"},"PeriodicalIF":13.2000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225001136","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
mRNA technology holds great promise for addressing a spectrum of diseases. Achieving widespread clinical utility of mRNA therapeutics requires effective transfection of mRNA to specific organs. Here we introduce a cyclic disulfide-primed short polyethyleneimine (CD-PEI) polymer that demonstrates administration route-commended concise organ-selective mRNA transfection (ACCOST) in vivo. The cyclic disulfide groups on the PEI polymer facilitate thiol-mediated cytosolic mRNA delivery and high transfection of different types of cells including hard-to-transfect immune cells. Remarkably, CD-PEI-mRNA complex achieves nearly 100 % organ-specific transfection in pancreas, lymph nodes, brain/spinal cord, and spleen via intraperitoneal, subcutaneous, intrathecal injection, and intravenous injections, respectively, with negligible accumulation in non-target organs. The intravenous injection to pregnant mice results in selective mRNA expression in the placenta instead. The spleen targeting occurs likely via erythrocyte-hijacking mechanism and systemically administered mRNA vaccines elicit robust antigen-specific anti-tumor immunity in murine B16-OVA model. Therefore, our ACCOST technology presents a novel strategy for organ-specific mRNA transfection.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.