EnzymesPub Date : 2021-01-01Epub Date: 2021-09-24DOI: 10.1016/bs.enz.2021.07.007
Tatiana V Ilina, Teresa Brosenitsch, Nicolas Sluis-Cremer, Rieko Ishima
{"title":"Retroviral RNase H: Structure, mechanism, and inhibition.","authors":"Tatiana V Ilina, Teresa Brosenitsch, Nicolas Sluis-Cremer, Rieko Ishima","doi":"10.1016/bs.enz.2021.07.007","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.07.007","url":null,"abstract":"<p><p>All retroviruses encode the enzyme, reverse transcriptase (RT), which is involved in the conversion of the single-stranded viral RNA genome into double-stranded DNA. RT is a multifunctional enzyme and exhibits DNA polymerase and ribonuclease H (RNH) activities, both of which are essential to the reverse-transcription process. Despite the successful development of polymerase-targeting antiviral drugs over the last three decades, no bona fide inhibitor against the RNH activity of HIV-1 RT has progressed to clinical evaluation. In this review article, we describe the retroviral RNH function and inhibition, with primary consideration of the structural aspects of inhibition.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"227-247"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994160/pdf/nihms-1790289.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39958015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-09-01DOI: 10.1016/bs.enz.2021.07.006
Ekaterina Knyazhanskaya, Marc C Morais, Kyung H Choi
{"title":"Flavivirus enzymes and their inhibitors.","authors":"Ekaterina Knyazhanskaya, Marc C Morais, Kyung H Choi","doi":"10.1016/bs.enz.2021.07.006","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.07.006","url":null,"abstract":"<p><p>Flaviviruses such as dengue, Japanese encephalitis, West Nile, Yellow Fever and Zika virus, cause viral hemorrhagic fever and encephalitis in humans. However, antiviral therapeutics to treat or prevent flavivirus infections are not yet available. Thus, there is pressing need to develop therapeutics and vaccines that target flavivirus infections. All flaviviruses carry a positive-sense single-stranded RNA genome, which encodes ten proteins; three structural proteins form the virus shell, and seven nonstructural (NS) proteins are involved in replication of the viral genome. While all NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are part of a functional membrane-bound replication complex, enzymatic activities required for flaviviral replication reside in only two NS proteins, NS3 and NS5. NS3 functions as a protease, helicase, and triphosphatase, and NS5 as a capping enzyme, methyltransferase, and RNA-dependent RNA polymerase. In this chapter, we provide an overview of viral replication focusing on the structure and function of NS3 and NS5 replicases. We further describe strategies and examples of current efforts to identify potential flavivirus inhibitors against NS3 and NS5 enzymatic activities that can be developed as therapeutic agents to combat flavivirus infections.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"265-303"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717743/pdf/nihms-1765121.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-09-23DOI: 10.1016/bs.enz.2021.07.005
Emmanuelle Pitre, Aartjan J W Te Velthuis
{"title":"Understanding viral replication and transcription using single-molecule techniques.","authors":"Emmanuelle Pitre, Aartjan J W Te Velthuis","doi":"10.1016/bs.enz.2021.07.005","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.07.005","url":null,"abstract":"<p><p>DNA and RNA viruses depend on one or more enzymes to copy and transcribe their genome, such as a polymerase, helicase, or exonuclease. Because of the important role of these enzymes in the virus replication cycle, they are key targets for antiviral development. To better understand the function of these enzymes and their interactions with host and viral factors, biochemical, structural and single-molecule approaches have been used to study them. Each of these techniques has its own strengths, and single-molecule methods have proved particularly powerful in providing insight into the step-sizes of motor proteins, heterogeneity of enzymatic activities, transient conformational changes, and force-sensitivity of reactions. Here we will discuss how single-molecule FRET, magnetic tweezers, optical tweezers, atomic force microscopy and flow stretching approaches have revealed novel insights into polymerase fidelity, the mechanism of action of antivirals, and the protein choreography within replication complexes.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"83-113"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-07-24DOI: 10.1016/bs.enz.2021.06.009
Yeonoh Shin, Katsuhiko S Murakami
{"title":"Watching the bacterial RNA polymerase transcription reaction by time-dependent soak-trigger-freeze X-ray crystallography.","authors":"Yeonoh Shin, Katsuhiko S Murakami","doi":"10.1016/bs.enz.2021.06.009","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.06.009","url":null,"abstract":"<p><p>RNA polymerase (RNAP) is the central enzyme of gene expression, which transcribes DNA to RNA. All cellular organisms synthesize RNA with highly conserved multi-subunit DNA-dependent RNAPs, except mitochondrial RNA transcription, which is carried out by a single-subunit RNAP. Over 60 years of extensive research has elucidated the structures and functions of cellular RNAPs. In this review, we introduce a brief structural feature of bacterial RNAP, the most well characterized model enzyme, and a novel experimental approach known as \"Time-dependent soak-trigger-freeze X-ray crystallography\" which can be used to observe the RNA synthesis reaction at atomic resolution in real time. This principle methodology can be used for elucidating fundamental mechanisms of cellular RNAP transcription.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"305-314"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8965730/pdf/nihms-1787266.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-09-24DOI: 10.1016/bs.enz.2021.06.003
Joy Y Feng, Adrian S Ray
{"title":"HCV RdRp, sofosbuvir and beyond.","authors":"Joy Y Feng, Adrian S Ray","doi":"10.1016/bs.enz.2021.06.003","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.06.003","url":null,"abstract":"<p><p>The therapeutic targeting of the nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase (RdRp) of the Hepatitis C Virus (HCV) with nucleotide analogs led to a deep understanding of this enzymes structure, function and substrate specificity. Unlike previously studied DNA polymerases including the reverse transcriptase of Human Immunodeficiency Virus, development of biochemical assays for HCV RdRp proved challenging due to low solubility of the full-length protein and inefficient acceptance of exogenous primer/templates. Despite the poor apparent specific activity, HCV RdRp was found to support rapid and processive transcription once elongation is initiated in vitro consistent with its high level of viral replication in the livers of patients. Understanding of the substrate specificity of HCV RdRp led to the discovery of the active triphosphate of sofosbuvir as a nonobligate chain-terminator of viral RNA transcripts. The ternary crystal structure of HCV RdRp, primer/template, and incoming nucleotide showed the interaction between the nucleotide analog and the 2'-hydroxyl binding pocket and how an unfit mutation of serine 282 to threonine results in resistance by interacting with the uracil base and modified 2'-position of the analog. Host polymerases mediate off-target toxicity of nucleotide analogs and the active metabolite of sofosbuvir was found to not be efficiently incorporated by host polymerases including the mitochondrial RNA polymerase (POLRMT). Knowledge from studying inhibitors of HCV RdRp serves to advance antiviral drug discovery for other emerging RNA viruses including the discovery of remdesivir as an inhibitor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the virus that causes COVID-19.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"63-82"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-11-10DOI: 10.1016/bs.enz.2021.09.006
Carlos E Catalano, Marc C Morais
{"title":"Viral genome packaging machines: Structure and enzymology.","authors":"Carlos E Catalano, Marc C Morais","doi":"10.1016/bs.enz.2021.09.006","DOIUrl":"10.1016/bs.enz.2021.09.006","url":null,"abstract":"<p><p>Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"369-413"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39802673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-09-27DOI: 10.1016/bs.enz.2021.07.001
Kenneth A Johnson, Tyler Dangerfield
{"title":"Mechanisms of inhibition of viral RNA replication by nucleotide analogs.","authors":"Kenneth A Johnson, Tyler Dangerfield","doi":"10.1016/bs.enz.2021.07.001","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.07.001","url":null,"abstract":"<p><p>Nucleotide analogs are the cornerstone of direct acting antivirals used to control infection by RNA viruses. Here we review what is known about existing nucleotide/nucleoside analogs and the kinetics and mechanisms of RNA and DNA replication, with emphasis on the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) in comparison to HIV reverse transcriptase and Hepatitis C RdRp. We demonstrate how accurate kinetic analysis reveals surprising results to explain the effectiveness of antiviral nucleoside analogs providing guidelines for the design of new inhibitors.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"39-62"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-07-19DOI: 10.1016/bs.enz.2021.06.001
Dennis S Winston, David D Boehr
{"title":"Allosteric and dynamic control of RNA-dependent RNA polymerase function and fidelity.","authors":"Dennis S Winston, David D Boehr","doi":"10.1016/bs.enz.2021.06.001","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.06.001","url":null,"abstract":"<p><p>All RNA viruses encode an RNA-dependent RNA polymerase (RdRp) responsible for genome replication. It is now recognized that enzymes in general, and RdRps specifically, are dynamic macromolecular machines such that their moving parts, including active site loops, play direct functional roles. While X-ray crystallography has provided deep insight into structural elements important for RdRp function, this methodology generally provides only static snapshots, and so is limited in its ability to report on dynamic fluctuations away from the lowest energy conformation. Nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations and other biophysical techniques have brought new insight into RdRp function by their ability to characterize the trajectories, kinetics and thermodynamics of conformational motions. In particular, these methodologies have identified coordinated motions among conserved structural motifs necessary for nucleotide selection and incorporation. Disruption of these motions through amino acid substitutions or inhibitor binding impairs RdRp function. Understanding and re-engineering these motions thus provides exciting new avenues for anti-viral strategies. This chapter outlines the basics of these methodologies, summarizes the dynamic motions observed in different RdRps important for nucleotide selection and incorporation, and illustrates how this information can be leveraged towards rational vaccine strain development and anti-viral drug design.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"149-193"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39569529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-07-19DOI: 10.1016/bs.enz.2021.06.002
Peng Gong
{"title":"Structural basis of viral RNA-dependent RNA polymerase nucleotide addition cycle in picornaviruses.","authors":"Peng Gong","doi":"10.1016/bs.enz.2021.06.002","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.06.002","url":null,"abstract":"<p><p>RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of processive nucleic acid polymerases, carrying out DNA-independent replication/transcription processes. Although viral RdRPs have versatile global structures, they do share a structurally highly conserved active site comprising catalytic motifs A-G. In spite of different initiation modes, the nucleotide addition cycle (NAC) in the RdRP elongation phase probably follows consistent mechanisms. In this chapter, representative structures of picornavirus RdRP elongation complexes are used to illustrate RdRP NAC mechanisms. In the pre-chemistry part of the NAC, RdRPs utilize a unique palm domain-based active site closure that can be further decomposed into two sequential steps. In the post-chemistry part of the NAC, the translocation process is stringently controlled by the RdRP-specific motif G, resulting in asymmetric movements of the template-product RNA. Future efforts to elucidate regulation/intervention mechanisms by mismatched NTPs or nucleotide analog antivirals are necessary to achieve comprehensive understandings of viral RdRP NAC.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"215-233"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39569531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-08-23DOI: 10.1016/bs.enz.2021.07.004
Mohamad S Sotoudegan, Jamie J Arnold, Craig E Cameron
{"title":"Single-cell analysis for the study of viral inhibitors.","authors":"Mohamad S Sotoudegan, Jamie J Arnold, Craig E Cameron","doi":"10.1016/bs.enz.2021.07.004","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.07.004","url":null,"abstract":"<p><p>Stochastic outcomes of viral infections are attributed in large part to multiple layers of intrinsic and extrinsic heterogeneity that exist within a population of cells and viruses. Traditional methods in virology often lack the ability to demonstrate cell-to-cell variability in response to the invasion of viruses, and to decipher the sources of heterogeneities that are reflected in the variable infection dynamics. To overcome this challenge, the field of single-cell virology emerged less than a decade ago, enabling researchers to reveal the behavior of single, isolated, infected cells that has been masked in population-based assays. The use of microfluidics in single-cell virology, in particular, has resulted in the development of high-throughput devices that are capable of capturing, isolating, and monitoring single infected cells over the duration of an infection. Results from the studies of viral infection dynamics presented in this chapter indicate how single-cell data provide a more accurate prediction of the start time, replication rate, duration, and yield of infection when compared to population-based data. Additionally, single-cell analysis reveals striking differences between genetically distinct viruses that are almost indistinguishable in population methods. Importantly, both the efficacy and distinct mechanisms of action of antiviral compounds can be elucidated by using single-cell analysis.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"195-213"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39569530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}