EnzymesPub Date : 2021-01-01Epub Date: 2021-07-24DOI: 10.1016/bs.enz.2021.06.008
Pu Chen, Zhijian Li, Sheng Cui
{"title":"Picornaviral 2C proteins: A unique ATPase family critical in virus replication.","authors":"Pu Chen, Zhijian Li, Sheng Cui","doi":"10.1016/bs.enz.2021.06.008","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.06.008","url":null,"abstract":"<p><p>The 2C proteins of Picornaviridae are unique members of AAA+ protein family. Although picornavirus 2C shares many conserved motifs with Super Family 3 DNA helicases, duplex unwinding activity of many 2C proteins remains undetected, and high-resolution structures of 2C hexamers are unavailable. All characterized 2C proteins exhibit ATPase activity, but the purpose of ATP hydrolysis is not fully understood. 2C is highly conserved among picornaviruses and plays crucial roles in nearly all steps of the virus lifecycle. It is therefore considered as an effective target for broad-spectrum antiviral drug development. Crystallographic investigation of enterovirus 2C proteins provide structural details important for the elucidation of 2C function and development of antiviral drugs. This chapter summarizes not only the findings of enzymatic activities, biochemical and structural characterizations of the 2C proteins, but also their role in virus replication, immune evasion and morphogenesis. The linkage between structure and function of the 2C proteins is discussed in detail. Inhibitors targeting the 2C proteins are also summarized to provide an overview of drug development. Finally, we raise several key questions to be addressed in this field and provide future research perspective on this unique class of ATPases.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"235-264"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39569532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-08-23DOI: 10.1016/bs.enz.2021.06.007
Dario Oliveira Passos, Min Li, Robert Craigie, Dmitry Lyumkis
{"title":"Retroviral integrase: Structure, mechanism, and inhibition.","authors":"Dario Oliveira Passos, Min Li, Robert Craigie, Dmitry Lyumkis","doi":"10.1016/bs.enz.2021.06.007","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.06.007","url":null,"abstract":"<p><p>The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"249-300"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8732146/pdf/nihms-1766391.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39958016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-09-01DOI: 10.1016/bs.enz.2021.07.003
Jocelyne Piret, Guy Boivin
{"title":"DNA polymerases of herpesviruses and their inhibitors.","authors":"Jocelyne Piret, Guy Boivin","doi":"10.1016/bs.enz.2021.07.003","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.07.003","url":null,"abstract":"<p><p>Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. The main characteristics of these viruses are their ability to establish a lifelong latency into the host with a potential to reactivate periodically. Primary infections and reactivations with herpesviruses are responsible for a large spectrum of diseases and may result in severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the replicative cycle of herpesviruses, and the target of most antiviral agents (i.e., nucleoside, nucleotide and pyrophosphate analogs). However, long-term prophylaxis and treatment with these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (nucleoside analogs) and/or DNA polymerases, with potential cross-resistance between the different analogs. Drug resistance mutations mainly arise in conserved regions of the polymerase and exonuclease functional domains of these enzymes. In the polymerase domain, mutations associated with resistance to nucleoside/nucleotide analogs may directly or indirectly affect drug binding or incorporation into the primer strand, or increase the rate of extension of DNA to overcome chain termination. In the exonuclease domain, mutations conferring resistance to nucleoside/nucleotide analogs may reduce the rate of excision of incorporated drug, or continue DNA elongation after drug incorporation without excision. Mutations associated with resistance to pyrophosphate analogs may alter drug binding or the conformational changes of the polymerase domain required for an efficient activity of the enzyme. Novel herpesvirus inhibitors with a potent antiviral activity against drug-resistant isolates are thus needed urgently.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"79-132"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39958017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-07-24DOI: 10.1016/bs.enz.2021.06.006
Nicolas Sluis-Cremer
{"title":"Retroviral reverse transcriptase: Structure, function and inhibition.","authors":"Nicolas Sluis-Cremer","doi":"10.1016/bs.enz.2021.06.006","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.06.006","url":null,"abstract":"<p><p>Reverse transcriptase (RT) is a multifunctional enzyme that has RNA- and DNA-dependent DNA polymerase activity and ribonuclease H (RNase H) activity, and is responsible for the reverse transcription of retroviral single-stranded RNA into double-stranded DNA. The essential role that RT plays in the human immunodeficiency virus (HIV) life cycle is highlighted by the fact that multiple antiviral drugs-which can be classified into two distinct therapeutic classes-are routinely used to treat and/or prevent HIV infection. This book chapter provides detailed insights into the three-dimensional structure of HIV RT, the biochemical mechanisms of DNA polymerization and RNase H activity, and the mechanisms by which nucleoside/nucleotide and nonnucleoside RT inhibitors block reverse transcription.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"179-194"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39958013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-10-13DOI: 10.1016/bs.enz.2021.09.001
Rebeca Bocanegra, Ismael Plaza G A, Borja Ibarra
{"title":"In vitro single-molecule manipulation studies of viral DNA replication.","authors":"Rebeca Bocanegra, Ismael Plaza G A, Borja Ibarra","doi":"10.1016/bs.enz.2021.09.001","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.09.001","url":null,"abstract":"<p><p>Faithfull replication of genomic information relies on the coordinated activity of the multi-protein machinery known as the replisome. Several constituents of the replisome operate as molecular motors that couple thermal and chemical energy to a mechanical task. Over the last few decades, in vitro single-molecule manipulation techniques have been used to monitor and manipulate mechanically the activities of individual molecular motors involved in DNA replication with nanometer, millisecond, and picoNewton resolutions. These studies have uncovered the real-time kinetics of operation of these biological systems, the nature of their transient intermediates, and the processes by which they convert energy to work (mechano-chemistry), ultimately providing new insights into their inner workings of operation not accessible by ensemble assays. In this chapter, we describe two of the most widely used single-molecule manipulation techniques for the study of DNA replication, optical and magnetic tweezers, and their application in the study of the activities of proteins involved in viral DNA replication.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"115-148"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39569528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-11-10DOI: 10.1016/bs.enz.2021.09.002
Jesse D Pyle, Sean P J Whelan, Louis-Marie Bloyet
{"title":"Structure and function of negative-strand RNA virus polymerase complexes.","authors":"Jesse D Pyle, Sean P J Whelan, Louis-Marie Bloyet","doi":"10.1016/bs.enz.2021.09.002","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.09.002","url":null,"abstract":"<p><p>Viruses with negative-strand RNA genomes (NSVs) include many highly pathogenic and economically devastating disease-causing agents of humans, livestock, and plants-highlighted by recent Ebola and measles virus epidemics, and continuously circulating influenza virus. Because of their protein-coding orientation, NSVs face unique challenges for efficient gene expression and genome replication. To overcome these barriers, NSVs deliver a large and multifunctional RNA-dependent RNA polymerase into infected host cells. NSV-encoded polymerases contain all the enzymatic activities required for transcription and replication of their genome-including RNA synthesis and mRNA capping. Here, we review the structures and functions of NSV polymerases with a focus on key domains responsible for viral replication and gene expression. We highlight shared and unique features among polymerases of NSVs from the Mononegavirales, Bunyavirales, and Articulavirales orders.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"21-78"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39958014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-07-24DOI: 10.1016/bs.enz.2021.06.005
Utz Fischer, Julia Bartuli, Clemens Grimm
{"title":"Structure and function of the poxvirus transcription machinery.","authors":"Utz Fischer, Julia Bartuli, Clemens Grimm","doi":"10.1016/bs.enz.2021.06.005","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.06.005","url":null,"abstract":"<p><p>Members of the Poxviridae family are large double-stranded DNA viruses that replicate exclusively in the cytoplasm of their hosts. This goes in hand with a high level of independence from the host cell, which supports transcription and replication events only in the nucleus or in DNA-containing organelles. Consequently, virus specific, rather than cellular enzymes mediate most processes involving DNA replication and mRNA synthesis. Recent technological advances allowed a detailed functional and structural investigation of the transcription machinery of the prototypic poxvirus vaccinia. The DNA-dependent RNA polymerase (RNAP) at its core displays distinct similarities to eukaryotic RNAPs. Strong idiosyncrasies, however, are apparent for viral factors that are associated with the viral RNAP during mRNA production. We expect that future studies will unravel more key aspects of poxvirus gene expression, helping also the understanding of nuclear transcription mechanisms.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"1-20"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2021-01-01Epub Date: 2021-11-02DOI: 10.1016/bs.enz.2021.09.003
Donald M Coen, Jessica L Lawler, Jonathan Abraham
{"title":"Herpesvirus DNA polymerase: Structures, functions, and mechanisms.","authors":"Donald M Coen, Jessica L Lawler, Jonathan Abraham","doi":"10.1016/bs.enz.2021.09.003","DOIUrl":"https://doi.org/10.1016/bs.enz.2021.09.003","url":null,"abstract":"<p><p>Herpesviruses comprise a family of DNA viruses that cause a variety of human and veterinary diseases. During productive infection, mammalian, avian, and reptilian herpesviruses replicate their genomes using a set of conserved viral proteins that include a two subunit DNA polymerase. This enzyme is both a model system for family B DNA polymerases and a target for inhibition by antiviral drugs. This chapter reviews the structure, function, and mechanisms of the polymerase of herpes simplex viruses 1 and 2 (HSV), with only occasional mention of polymerases of other herpesviruses such as human cytomegalovirus (HCMV). Antiviral polymerase inhibitors have had the most success against HSV and HCMV. Detailed structural information regarding HSV DNA polymerase is available, as is much functional information regarding the activities of the catalytic subunit (Pol), which include a DNA polymerization activity that can utilize both DNA and RNA primers, a 3'-5' exonuclease activity, and other activities in DNA synthesis and repair and in pathogenesis, including some remaining to be biochemically defined. Similarly, much is known regarding the accessory subunit, which both resembles and differs from sliding clamp processivity factors such as PCNA, and the interactions of this subunit with Pol and DNA. Both subunits contribute to replication fidelity (or lack thereof). The availability of both pharmacologic and genetic tools not only enabled the initial identification of Pol and the pol gene, but has also helped dissect their functions. Nevertheless, important questions remain for this long-studied enzyme, which is still an attractive target for new drug discovery.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"133-178"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of EHop-016: a small molecule inhibitor of Rac.","authors":"Suranganie Dharmawardhane, Eliud Hernandez, Cornelis Vlaar","doi":"10.1016/B978-0-12-416749-0.00006-3","DOIUrl":"https://doi.org/10.1016/B978-0-12-416749-0.00006-3","url":null,"abstract":"<p><p>The Rac inhibitor EHop-016 was developed as a compound with the potential to inhibit cancer metastasis. Inhibition of the first step of metastasis, migration, is an important strategy for metastasis prevention. The small GTPase Rac acts as a pivotal binary switch that is turned \"on\" by guanine nucleotide exchange factors (GEFs) via a myriad of cell surface receptors, to regulate cancer cell migration, survival, and proliferation. Unlike the related GTPase Ras, Racs are not usually mutated, but overexpressed or overactivated in cancer. Therefore, a rational Rac inhibitor should block the activation of Rac by its upstream effectors, GEFs, and the Rac inhibitor NSC23766 was developed using this rationale. However, this compound is ineffective at inhibiting the elevated Rac activity of metastatic breast cancer cells. Therefore, a panel of small molecule compounds were derived from NSC23766 and screened for Rac activity inhibition in metastatic cancer cells. EHop-016 was identified as a compound that blocks the interaction of Rac with the GEF Vav in metastatic human breast cancer cells with an IC50 of ~1μM. At higher concentrations (10μM), EHop-016 inhibits the related Rho GTPase Cdc42, but not Rho, and also reduces cell viability. Moreover, EHop-016 inhibits the activation of the Rac downstream effector p21-activated kinase, extension of motile actin-based structures, and cell migration. Future goals are to develop EHop-016 as a therapeutic to inhibit cancer metastasis, either individually or in combination with current anticancer compounds. The next generation of EHop-016-based Rac inhibitors is also being developed. </p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"117-46"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/B978-0-12-416749-0.00006-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32510932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnzymesPub Date : 2013-01-01Epub Date: 2013-08-08DOI: 10.1016/B978-0-12-416749-0.00002-6
Till Maurer, Weiru Wang
{"title":"NMR study to identify a ligand-binding pocket in Ras.","authors":"Till Maurer, Weiru Wang","doi":"10.1016/B978-0-12-416749-0.00002-6","DOIUrl":"https://doi.org/10.1016/B978-0-12-416749-0.00002-6","url":null,"abstract":"<p><p>Despite decades of intense drug discovery efforts, to date no small molecules have been described that directly bind to Ras protein and effectively antagonize its function. In order to identify and characterize small-molecule binders to KRas, we carried out a fragment-based lead discovery effort. A ligand-detected primary nuclear magnetic resonance (NMR) screen identified 266 fragments from a library of 3285 diverse compounds. Protein-detected NMR using isotopically labeled KRas protein was applied for hit validation and binding site characterization. An area on the KRas surface emerged as a consensus site of fragment binding. X-ray crystallography studies on a subset of the hits elucidated atomic details of the ligand-protein interactions, and revealed that the consensus site comprises a shallow hydrophobic pocket. Comparison among the crystal structures indicated that the ligand-binding pocket is flexible and can be expanded upon ligand binding. The identified ligand-binding pocket is proximal to the protein-protein interface and therefore has the potential to mediate functional effects. Indeed, some ligands inhibited SOS1-dependent nucleotide exchange, although with weak potency. Several Ras ligands have been published in literature, the majority of which were discovered using NMR-based methods. Mapping of the ligand-binding sites revealed five areas on Ras with a high propensity for ligand binding and the potential of modulating Ras activity. </p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"15-39"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/B978-0-12-416749-0.00002-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32513118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}