Materials Today最新文献

筛选
英文 中文
MXene filled hydrogel and aerogel composites MXene 填充水凝胶和气凝胶复合材料
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-09-01 DOI: 10.1016/j.mattod.2024.06.011
Alzhan Baimenov , Chingis Daulbayev , Stavros G. Poulopoulos , Vadym N. Mochalin
{"title":"MXene filled hydrogel and aerogel composites","authors":"Alzhan Baimenov ,&nbsp;Chingis Daulbayev ,&nbsp;Stavros G. Poulopoulos ,&nbsp;Vadym N. Mochalin","doi":"10.1016/j.mattod.2024.06.011","DOIUrl":"10.1016/j.mattod.2024.06.011","url":null,"abstract":"<div><p>Two-dimensional (2D) transition metal carbides/nitrides, MXenes (in particular Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub><span>), and three-dimensional (3D) structures such as polymeric hydrogels or aerogels<span>, are promising families of materials, each in their own right, with advantageous properties for applications in biomedicine, water treatment, electronic devices, and energy. Combination of MXenes with hydro- or aerogels may further improve their individual properties and impart new characteristics. Potentially, it can also significantly improve the chemical stability of MXenes, which is currently one of the main limiting factors for their widespread use. In this paper, we review some representative fabrication techniques and properties of Ti</span></span><sub>3</sub>C<sub>2</sub>T<sub>x</sub><span> MXene/3D hydrogel and aerogel composites, as well as selected applications of these composites for energy storage and harvesting, biology and medicine, water treatment, and EMI shielding.</span></p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"78 ","pages":"Pages 75-91"},"PeriodicalIF":21.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141704782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-organic frameworks-engineered reactive-oxygen catalytic materials: Enzyme-mimicking coordinations, structure evolutions, and biotherapeutic applications 金属有机框架工程活性氧催化材料:仿酶配位、结构演变和生物治疗应用
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-09-01 DOI: 10.1016/j.mattod.2024.06.017
Lin Li , Qinlong Wen , Ting Wang , Sutong Xiao , Yang Gao , Mao Wang , Xiaohui Xu , Lang Ma , Chong Cheng
{"title":"Metal-organic frameworks-engineered reactive-oxygen catalytic materials: Enzyme-mimicking coordinations, structure evolutions, and biotherapeutic applications","authors":"Lin Li ,&nbsp;Qinlong Wen ,&nbsp;Ting Wang ,&nbsp;Sutong Xiao ,&nbsp;Yang Gao ,&nbsp;Mao Wang ,&nbsp;Xiaohui Xu ,&nbsp;Lang Ma ,&nbsp;Chong Cheng","doi":"10.1016/j.mattod.2024.06.017","DOIUrl":"10.1016/j.mattod.2024.06.017","url":null,"abstract":"<div><p><span><span>Metal-organic frameworks (MOFs)-engineered reactive-oxygen catalytic materials (ROCMs) have offered essential contributions to boosting the biocatalytic efficiency in diverse biomedical applications. While since the varied coordination environments, abundant node-ligand pairs, and multiple or complex atom sites, precisely overviewing the mechanisms and revealing the structure–reactivity relationships of MOFs-engineered ROCMs still confront great challenges, which is essential to direct the future design and applications of ROCMs. Here, we provide a comprehensive summarization of the latest progress and future trends in MOFs-engineered ROCMs with enzyme-mimicking structures for ROS regulation and biotherapeutic applications. First, the catalytic behaviors and fundamental mechanisms of MOFs-engineered ROCMs on regulating ROS levels are outlined. Then, the enzyme-mimicking coordination environments and structure evolutions of MOFs-engineered ROCMs are discussed thoroughly, including coordination modulation, hybrid structures, </span>carbon nanostructures, and single-atom materials. Particularly, we offer unique insights into </span>enzyme<span> structure mimicking, microenvironment modulation, structure evolutions, and theoretical understanding for revealing mechanisms. Thereafter, the representative biotherapeutic applications have been summarized with a unique focus on structural property-reactivity relationships. Finally, we systematically highlight the current challenges and future perspectives. Overall, this is a timely review that focuses on creating MOF structures for reactive-oxygen biocatalysis from structure-activity relationships to biological properties. We envision this cutting review will substantially stimulate the development and widespread utilization of MOFs-engineered ROCMs in biomedical applications.</span></p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"78 ","pages":"Pages 142-180"},"PeriodicalIF":21.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pinpointing carbonyl on pentagon defect for H2O2 electrosynthesis 为 H2O2 电合成精确定位五边形缺陷上的羰基
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-09-01 DOI: 10.1016/j.mattod.2024.07.001
Lin Jiang , Mingchuan Luo
{"title":"Pinpointing carbonyl on pentagon defect for H2O2 electrosynthesis","authors":"Lin Jiang ,&nbsp;Mingchuan Luo","doi":"10.1016/j.mattod.2024.07.001","DOIUrl":"10.1016/j.mattod.2024.07.001","url":null,"abstract":"<div><p>Defective carbon materials have emerged as promising candidates for the electrocatalysis of oxygen reduction reaction (ORR) to selectively produce H<sub>2</sub>O<sub>2</sub>. However, distinguishing the roles of oxygenates and carbon defects in carbon for 2e- ORR remains to be challenging. In a recent issue of Nature Communications, Yao and coworkers pinpointed the major active sites in oxygenated carbon materials and identified the key intermediate employing a series of dynamic and simulation techniques. In addition to highlight the proposed work, this comment article also discussed pioneering methodologies to characterize structure dynamics and probe the integral active center for rational design of carbon based catalysts with atomic precision.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"78 ","pages":"Pages 297-300"},"PeriodicalIF":21.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrostimulation via a 3D-printed, biomimetic, neurotrophic, electroconductive scaffold for the promotion of axonal regrowth after spinal cord injury 通过三维打印、仿生、神经营养、导电支架进行电刺激,促进脊髓损伤后的轴突再生
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-08-28 DOI: 10.1016/j.mattod.2024.07.015
Liam M. Leahy , Ian Woods , Javier Gutierrez-Gonzalez , Jack Maughan , Cian O’Connor , Martyna Stasiewicz , Kulwinder Kaur , Michael G. Monaghan , Adrian Dervan , Fergal J. O’Brien
{"title":"Electrostimulation via a 3D-printed, biomimetic, neurotrophic, electroconductive scaffold for the promotion of axonal regrowth after spinal cord injury","authors":"Liam M. Leahy ,&nbsp;Ian Woods ,&nbsp;Javier Gutierrez-Gonzalez ,&nbsp;Jack Maughan ,&nbsp;Cian O’Connor ,&nbsp;Martyna Stasiewicz ,&nbsp;Kulwinder Kaur ,&nbsp;Michael G. Monaghan ,&nbsp;Adrian Dervan ,&nbsp;Fergal J. O’Brien","doi":"10.1016/j.mattod.2024.07.015","DOIUrl":"10.1016/j.mattod.2024.07.015","url":null,"abstract":"<div><p>Spinal cord injury (SCI) is a devastating neurotrauma, affecting 250,000 to 500,000 people annually, and typically results in paralysis. Electrostimulation can promote neuronal growth, but the formation of a lesion cavity post-SCI inhibits regrowth, limiting its efficacy. Bridging the lesion with a structured, electroactive substrate to direct electrostimulation to growing neurites could support and drive neuronal regrowth through the lesion to enable functional recovery but to date, no such platform exists. This study describes the development of an electroconductive (15 ± 5 S/m), 3D-printed scaffold, comprising a polypyrrole/polycaprolactone framework filled with biomimetic &amp; neurotrophic extracellular matrix. 3D printing allowed inclusion of channels in the scaffold designed to mimic the size of human corticospinal tracts to direct electrostimulation to growing neurons. Scaffolds exhibited excellent biocompatibility with both neurons and human primary astrocytes and maintained electrical and biofunctionality when scaled to match the size of human corticospinal tracts. When neurons were cultured for 7 days on the scaffolds under continuous electrostimulation (200 mV/mm, 12 Hz), significantly longer neurites were observed on electrically stimulated electroconductive scaffolds. These results demonstrate that electrostimulation applied via an anatomically-mimetic, 3D-printed electroconductive scaffold drives neurite outgrowth and represents a promising approach for treatment of spinal cord injury.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"79 ","pages":"Pages 60-72"},"PeriodicalIF":21.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136970212400155X/pdfft?md5=b949bf3a37a6c5e476c606c0f71e29aa&pid=1-s2.0-S136970212400155X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing nano spinel phase and Li+ conductive network to enhance the electrochemical stability of ultrahigh-Ni cathode 构建纳米尖晶石相和 Li+ 导电网络以增强超高镍阴极的电化学稳定性
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-08-27 DOI: 10.1016/j.mattod.2024.08.002
Wenjin Huang , Yongjiang Sun , Guiquan Zhao , Qing Liu , Genfu Zhao , Lingyan Duan , Qi An , Futong Ren , Mengjiao Sun , Shubiao Xia , Hong Guo
{"title":"Constructing nano spinel phase and Li+ conductive network to enhance the electrochemical stability of ultrahigh-Ni cathode","authors":"Wenjin Huang ,&nbsp;Yongjiang Sun ,&nbsp;Guiquan Zhao ,&nbsp;Qing Liu ,&nbsp;Genfu Zhao ,&nbsp;Lingyan Duan ,&nbsp;Qi An ,&nbsp;Futong Ren ,&nbsp;Mengjiao Sun ,&nbsp;Shubiao Xia ,&nbsp;Hong Guo","doi":"10.1016/j.mattod.2024.08.002","DOIUrl":"10.1016/j.mattod.2024.08.002","url":null,"abstract":"<div><p>The tungsten with high oxidation states (W<sup>6+</sup>) had been proved to effectively improve the electrochemical performance of ultrahigh-nickel (Ni ≥ 90 %) cathode materials due to the unique microstructures. However, the exat location and underlying action mechanism of tungsten are still not well-understood, and there have been no reports on in-situ modification from bulk to surface simultaneously for these novel cathode materials. Here, a novel integrated strategy is proposed for in-situ modification of LiNi<sub>0.9</sub>Co<sub>0.09</sub>W<sub>0.01</sub>O<sub>2</sub> (NCW). Innovatively, the introduction of nano spinel phase and titanium pinned into the lattice further suppresses the anisotropic variation of unit cell and promotes the lithium-ion migration kinetics within the bulk. Additionally, the Li<sub>2</sub>TiO<sub>3</sub> conductive network enhances migration kinetics across interface and protects the active material against electrolyte erosion. Furthermore, the combination of in-situ analysis and DFT calculation reveals the ordered distribution of tungsten and the suppression effects of titanium on phase transition and cobalt redox. Consequently, the titanium-modified NCW exhibits significantly improved electrochemical performance, such as capacity retention of 93.0 % at 1C after 500 cycles in pouch-type full-cell, along with stable lattice oxygen during operation.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"79 ","pages":"Pages 86-96"},"PeriodicalIF":21.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-powered bimodal tactile imaging device for ultrasensitive pressure sensing, real-time visualization recognition, and intelligent control 用于超灵敏压力感应、实时可视化识别和智能控制的自供电双模触觉成像设备
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-08-24 DOI: 10.1016/j.mattod.2024.08.001
Kangting Liu , Yifan Xia , Xinrong Zhi , Shuhan Li , Siyu Zhang , Biao Yang , Mingyuan Li , Xin Wang , Caofeng Pan
{"title":"Self-powered bimodal tactile imaging device for ultrasensitive pressure sensing, real-time visualization recognition, and intelligent control","authors":"Kangting Liu ,&nbsp;Yifan Xia ,&nbsp;Xinrong Zhi ,&nbsp;Shuhan Li ,&nbsp;Siyu Zhang ,&nbsp;Biao Yang ,&nbsp;Mingyuan Li ,&nbsp;Xin Wang ,&nbsp;Caofeng Pan","doi":"10.1016/j.mattod.2024.08.001","DOIUrl":"10.1016/j.mattod.2024.08.001","url":null,"abstract":"<div><p>In the domain of smart robotics, the refinement of tactile imaging constitutes a seminal element for enhancement of human–machine interaction (HMI) and enrichment of artificial intelligence (AI). This field is confronted with dual challenges of achieving high-sensitive pressure detection and precise localization of tactile stimuli. In response, the current research introduces a groundbreaking self-powered bimodal tactile imaging device (TID), featuring a configuration of high-dielectric thin film superimposed on laser-induced graphene (LIG) electrodes. This pioneering design is conceived to facilitate not only the detection of subtle pressure but also to support real-time visual recognition and intelligent control functionalities. The bimodal nature of the TID allows for the transformation of slight tactile inputs into both luminous triboelectrification-induced electroluminescence (TIEL) and measurable electrical signals, thereby seamlessly merging the realms of tactile perception and optical display. Leveraging the luminosity of TIEL, the TID adeptly achieves tactile imaging and immediate visual recognition, with its capabilities further enhanced through the integration of machine learning algorithms. Additionally, the TID exhibits a remarkable proficiency in precise tactile localization, through the analysis of voltage outputs initiated by delicate touching and sliding motions. Moreover, an advanced intelligent control system, predicated on the optical-electrical dual-modal sensing provided by the TID, has been developed. This system illustrates the synergistic fusion of visual recognition with accurate tactile localization, underscoring the substantial utility of the bimodal TID across diverse applications in HMI, AI, and intelligent robotic platforms and heralding new avenues for interactive and responsive robotic systems.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"79 ","pages":"Pages 73-85"},"PeriodicalIF":21.1,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disordered metallic carbon materials from graphene edge chemistry 来自石墨烯边缘化学的无序金属碳材料
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-08-15 DOI: 10.1016/j.mattod.2024.07.011
Katarzyna Z. Donato , Gavin K.W. Koon , Sarah J. Lee , Alexandra Carvalho , Hui Li Tan , Mariana C.F. Costa , Jakub Tolasz , Petra Ecorchard , Paweł P. Michałowski , Ricardo K. Donato , A.H. Castro Neto
{"title":"Disordered metallic carbon materials from graphene edge chemistry","authors":"Katarzyna Z. Donato ,&nbsp;Gavin K.W. Koon ,&nbsp;Sarah J. Lee ,&nbsp;Alexandra Carvalho ,&nbsp;Hui Li Tan ,&nbsp;Mariana C.F. Costa ,&nbsp;Jakub Tolasz ,&nbsp;Petra Ecorchard ,&nbsp;Paweł P. Michałowski ,&nbsp;Ricardo K. Donato ,&nbsp;A.H. Castro Neto","doi":"10.1016/j.mattod.2024.07.011","DOIUrl":"10.1016/j.mattod.2024.07.011","url":null,"abstract":"<div><p>The creation of three dimensional (3D) structures out of two-dimensional (2D) materials while retaining their extraordinary mechanical and transport properties after processing is one of the current great challenges in materials sciences (Ruoff, 2008; Kong et al., 2019; Lin et al., 2019). Guided by density functional theory (DFT) and molecular dynamics (MD) simulations we found a successful route for a sustainable production of 3D metallic carbon materials that are synthesized from pristine 2D graphene flakes with hydrolyzed edges. The edge hydrolysis lead to strong geometrical anisotropy and self-organization in solution before processing. After processing we obtain a 3D carbon structure where 2D graphene flakes are crosslinked by carbon chains with aromatic groups at very mild annealing temperatures (∼150 °C), eliminating the constraints for achieving the in-situ preparation of conductive carbon structures. These 3D carbon structures preserve microscopic order but are macroscopically disordered, presenting physical properties of anisotropic metallic carbon with large Young modulus (E ≈ 20 GPa), and room temperature thermal (k ≈ 180 W/mK) and electrical (σ ≈ 300 kS/m) conductivities comparable to ordinary metals.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"79 ","pages":"Pages 49-59"},"PeriodicalIF":21.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The taming of the screw: Dislocation cores in BCC metals and alloys 驯服螺钉:BCC 金属和合金中的位错核心
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-08-12 DOI: 10.1016/j.mattod.2024.07.009
Rui Wang , Lingyu Zhu , Subrahmanyam Pattamatta , David J. Srolovitz , Zhaoxuan Wu
{"title":"The taming of the screw: Dislocation cores in BCC metals and alloys","authors":"Rui Wang ,&nbsp;Lingyu Zhu ,&nbsp;Subrahmanyam Pattamatta ,&nbsp;David J. Srolovitz ,&nbsp;Zhaoxuan Wu","doi":"10.1016/j.mattod.2024.07.009","DOIUrl":"10.1016/j.mattod.2024.07.009","url":null,"abstract":"<div><p>Body-centred cubic (BCC) transition metals tend to be brittle at low temperatures, which poses significant challenges in their processing and major concerns for damage tolerance. The brittleness is largely dictated by cleavage fracture at crack-tips and high lattice frictions of screw dislocation cores; the nature and control of which remain a puzzle after nearly a century. Here, we introduce a crystal geometry-based, semi-empirical material index χ, the energy difference between the BCC and face-centred-cubic structures, that guides engineering of crack-tip and screw dislocation core properties. The unstable stacking fault energy on <span><math><mrow><mfenced><mrow><mn>1</mn><mspace></mspace><mn>1</mn><mspace></mspace><mn>0</mn></mrow></mfenced></mrow></math></span> planes and screw dislocation Peierls barrier have near-linear scaling with χ and the screw core transforms from non-degenerate to degenerate when χ drops below some thresholds in homogenized BCC alloys, as demonstrated in binary transition metal alloys. The index χ has its origin in crystal geometry and can be extended to finite temperatures; its value is related to entropy and valence electron concentrations, which can be quantitatively predicted by first-principles calculations and effectively tuned in solid solution alloys. The χ-model and computational approach provide a practical path to screening of favourable solutes and compositions for enhanced ductility and toughness in BCC alloys.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"79 ","pages":"Pages 36-48"},"PeriodicalIF":21.1,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reveal and correlate working geometry and surface chemistry of Ni nanocatalysts in CO2 reforming of methane 揭示并关联镍纳米催化剂在甲烷二氧化碳转化过程中的工作几何形状和表面化学性质
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-08-10 DOI: 10.1016/j.mattod.2024.07.006
Zichun Wang , Qian Lv , Ang Li , Ping Wu , Lizhuo Wang , Wei Li , Yijiao Jiang , Catherine Stampfl , Xiaozhou Liao , Jun Huang , Xiaodong Han
{"title":"Reveal and correlate working geometry and surface chemistry of Ni nanocatalysts in CO2 reforming of methane","authors":"Zichun Wang ,&nbsp;Qian Lv ,&nbsp;Ang Li ,&nbsp;Ping Wu ,&nbsp;Lizhuo Wang ,&nbsp;Wei Li ,&nbsp;Yijiao Jiang ,&nbsp;Catherine Stampfl ,&nbsp;Xiaozhou Liao ,&nbsp;Jun Huang ,&nbsp;Xiaodong Han","doi":"10.1016/j.mattod.2024.07.006","DOIUrl":"10.1016/j.mattod.2024.07.006","url":null,"abstract":"<div><p>The commercialization of Ni-based catalysts in CO<sub>2</sub> dry reforming of methane (DRM) suffers from their quick deactivation. Here, we reveal each reaction pathway for DRM based on the Ni catalyst composition and geometry under working conditions, through one working platform combining <em>in situ</em> high resolution Cs corrected environmental transmission electron microscopy and electron energy-loss spectroscopy coupled with mass spectroscopy. The formation of Ni<sub>3</sub>C has been found to inhibit the decomposition of CO<sub>2</sub> and CH<sub>4</sub>, and to promote the formation of onion-like carbon to encapsulate the Ni catalysts, leading to the deactivation of the Ni-based catalysts. Designing the suitable supports or promoters to keep the Ni surface structure under Ni-NiO cycle can drive the simultaneously amorphous carbon deposition-consumption cycle and minimise the coke formation. This research is not only for developing coke resistance Ni catalysts in the DRM, but also significant for investigating many catalysis challenges both in research and engineering.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"79 ","pages":"Pages 16-27"},"PeriodicalIF":21.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369702124001469/pdfft?md5=b029338d24bb5e7f17994e4f266f9426&pid=1-s2.0-S1369702124001469-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of metal ion-catecholate complexes towards advanced materials 设计金属离子-邻苯二酚复合物,开发先进材料
IF 21.1 1区 材料科学
Materials Today Pub Date : 2024-08-08 DOI: 10.1016/j.mattod.2024.07.010
Yuan Zou , Xianheng Wang , Yiwen Li , Yiyun Cheng
{"title":"Design of metal ion-catecholate complexes towards advanced materials","authors":"Yuan Zou ,&nbsp;Xianheng Wang ,&nbsp;Yiwen Li ,&nbsp;Yiyun Cheng","doi":"10.1016/j.mattod.2024.07.010","DOIUrl":"10.1016/j.mattod.2024.07.010","url":null,"abstract":"<div><p>Metal ion-catecholate complexes (MCCs) extensively exist in plants and animals, which are in charge of versatile biological functions, such as constructing organs, controlled releasing metal ions and antibacterial. Inspired by this, researchers have exploited various kinds of artificial MCCs, which can serve as structural and functional synthons to construct advanced materials. In terms of the structural contribution, these complexes exhibit not only physical interactions, including metal-coordination, hydrogen bonding, π-π stacking and cation-π interactions, but also rich chemical reactions, including radical polymerization, Schiff base reaction and Michael addition. In terms of functional contribution, the complexes can endow the materials with the intrinsic properties of polyphenols and metal ions, including antioxidant, adhesion, antibacterial, bioimaging and catalyst. In addition, some emerging and fantastic functions are also originally from the complexes, such as tunable mechanical property, self-healing, controlled release and photothermal effect. In this review paper, we comprehensively discuss the recent development of MCC-based materials, including coatings, particles, metallogels and metal–organic frameworks (MOFs). Perspectives in this field has also been put forward as well.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"79 ","pages":"Pages 112-133"},"PeriodicalIF":21.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信