Sono-responsive Bio-MOF-11 as a triboelectric material for powering transient implants

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dabin Kim , Sera Jeon , Cheol Hyoun Ahn , Minki Kang , Jin Young Choi , Xiangchun Meng , Byung-Joon Park , Hyun Mo , SeongMin Kim , Byung-Ok Choi , Hyung Koun Cho , Sang-Woo Kim
{"title":"Sono-responsive Bio-MOF-11 as a triboelectric material for powering transient implants","authors":"Dabin Kim ,&nbsp;Sera Jeon ,&nbsp;Cheol Hyoun Ahn ,&nbsp;Minki Kang ,&nbsp;Jin Young Choi ,&nbsp;Xiangchun Meng ,&nbsp;Byung-Joon Park ,&nbsp;Hyun Mo ,&nbsp;SeongMin Kim ,&nbsp;Byung-Ok Choi ,&nbsp;Hyung Koun Cho ,&nbsp;Sang-Woo Kim","doi":"10.1016/j.mattod.2025.06.012","DOIUrl":null,"url":null,"abstract":"<div><div>Recent progress in transient implantable medical devices (IMDs) has drawn attention to the necessity for biodegradable power sources, which can eliminate the need for secondary removal surgeries after implantation. However, relying solely on the material’s intrinsic biodegradation rate or device dimensions for biodegradation presents limitations. In this study, we propose an acoustically-mediated degradable-triboelectric nanogenerator (AMD-TENG) and its operating system as a transient implantable power source. We introduce the incorporation of Bio-MOF-11 into poly(lactic-co-glycolic) acid (PLGA) as a durable, high-performance triboelectric layer. Our findings demonstrate that the Bio-MOF-11/PLGA film, when exposed to low-intensity ultrasound, generates a stable electrical output of 12.5 V and 87.5 μA/cm<sup>2</sup>, confirming its viability as a power source for IMDs. Additionally, the integration of surface pores allows for controlled biodegradation under high-intensity ultrasound, enabling on-demand dissolution and subsequent generation of reactive oxygen species (ROS) to accelerate degradation. These results highlight the efficiency of the Bio-MOF-11/PLGA as a tribo-layer in electricity generation and controlled degradation, offering a sustainable and safe solution for powering and disposing of transient IMDs.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"88 ","pages":"Pages 178-185"},"PeriodicalIF":22.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125002524","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent progress in transient implantable medical devices (IMDs) has drawn attention to the necessity for biodegradable power sources, which can eliminate the need for secondary removal surgeries after implantation. However, relying solely on the material’s intrinsic biodegradation rate or device dimensions for biodegradation presents limitations. In this study, we propose an acoustically-mediated degradable-triboelectric nanogenerator (AMD-TENG) and its operating system as a transient implantable power source. We introduce the incorporation of Bio-MOF-11 into poly(lactic-co-glycolic) acid (PLGA) as a durable, high-performance triboelectric layer. Our findings demonstrate that the Bio-MOF-11/PLGA film, when exposed to low-intensity ultrasound, generates a stable electrical output of 12.5 V and 87.5 μA/cm2, confirming its viability as a power source for IMDs. Additionally, the integration of surface pores allows for controlled biodegradation under high-intensity ultrasound, enabling on-demand dissolution and subsequent generation of reactive oxygen species (ROS) to accelerate degradation. These results highlight the efficiency of the Bio-MOF-11/PLGA as a tribo-layer in electricity generation and controlled degradation, offering a sustainable and safe solution for powering and disposing of transient IMDs.

Abstract Image

作为瞬态植入物供电的摩擦电材料的声响应Bio-MOF-11
瞬态植入式医疗器械(imd)的最新进展引起了人们对生物可降解电源的关注,这种电源可以消除植入式医疗器械植入后的二次移除手术。然而,仅仅依靠材料的固有生物降解率或设备尺寸进行生物降解存在局限性。在这项研究中,我们提出了一种声介导的可降解摩擦电纳米发电机(AMD-TENG)及其操作系统作为瞬态植入式电源。我们将Bio-MOF-11引入聚乳酸-羟基乙酸(PLGA)中,作为一种耐用、高性能的摩擦电层。我们的研究结果表明,Bio-MOF-11/PLGA薄膜在低强度超声下可以产生12.5 V和87.5 μA/cm2的稳定电输出,证实了其作为imd电源的可行性。此外,表面孔隙的整合允许在高强度超声下控制生物降解,实现按需溶解和随后产生的活性氧(ROS)来加速降解。这些结果突出了Bio-MOF-11/PLGA作为摩擦层在发电和控制降解方面的效率,为瞬态imd的供电和处理提供了可持续和安全的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信