Liwen Hu , Baihui Chen , ElHussein Shata , Shashank Shekhar , Charif Mahmoudi , Ivan Seskar , Qingze Zou , Y.B. Guo
{"title":"Feasibility of 5G-enabled process monitoring in milling operations","authors":"Liwen Hu , Baihui Chen , ElHussein Shata , Shashank Shekhar , Charif Mahmoudi , Ivan Seskar , Qingze Zou , Y.B. Guo","doi":"10.1016/j.mfglet.2024.09.024","DOIUrl":"10.1016/j.mfglet.2024.09.024","url":null,"abstract":"<div><div>5G monitoring holds immense potential for revolutionizing manufacturing processes by enabling real-time data transmission, remote control, enhanced quality control, and increased efficiency. However, it also presents challenges related to 5G monitoring infrastructure. To explore 5G’s potential for process monitoring, this study introduces a novel 5G-enabled architecture designed to address the challenges, enhancing the process monitoring’s efficiency, accuracy, and reliability in the case of milling operation. To investigate the feasibility of this sophisticated 5G network for process monitoring, two testbeds, i.e., the 5G robotic milling testbed and the 5G CNC milling testbed, have been developed. An accelerometer and a laser scanner have been retrofitted with 5G communications capability to capture critical process signals in the testbeds, respectively. It has shown that the sensor data can be upstreamed to a 5G edge server for data analytics and visualization in ultra-low latency. This work highlights the transformative impact of 5G communication on process monitoring for time-critical manufacturing.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 200-207"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stereolithography-assisted sodium alginate-collagen hydrogel scaffold with molded internal channels","authors":"Chi Wang, Yingge Zhou","doi":"10.1016/j.mfglet.2024.09.045","DOIUrl":"10.1016/j.mfglet.2024.09.045","url":null,"abstract":"<div><div>Fabricating internal vascular networks within a hydrogel scaffold is essential for facilitating the supply of nutrients, oxygen, and metabolism exchange required by the encapsulated cells. The challenges in current hydrogel scaffold fabrication involve the difficulty of building adequate internal channels, poor scaffold geometry precision, and low cell viability caused by the fabrication process and polymer material properties. Stereolithography (SLA) stands out as a 3D printing technique distinguished by its superior production efficiency, advanced precision, and remarkable resolution in crafting intricate custom geometries. These attributes establish it as an innovative approach for templates in scaffold fabrication, potentially surpassing the fused deposition modeling (FDM)-based template strategy. Meanwhile, it exerts less shear stress on the cells compared to the direct bioprinting process. This novel strategy enables the fabrication of hydrogel vascular structure within the precision of 500 µm in both channel diameter and wall thickness. In this paper, various sodium alginate and collagen (SA-Col) composite hydrogels with varying collagen concentrations have been investigated to identify the optimal ratio for fabricating hydrogel scaffolds with channels.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 375-383"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metallurgical characteristics and mechanical properties of dissimilar friction stir welded DH36 steel and UNS G10080 steel joints","authors":"Pardeep Pankaj , Pankaj Biswas , Dave Kim","doi":"10.1016/j.mfglet.2024.09.046","DOIUrl":"10.1016/j.mfglet.2024.09.046","url":null,"abstract":"<div><div>The present study expanded the scientific comprehension of the friction stir welding process for dissimilar steels, namely high-strength shipbuilding grade DH36 steel and UNS G10080 steel. The effect of tool traverse speed and plunge depth on temperature history, microstructure characteristics, and mechanical properties is investigated experimentally. The metallographic characterizations were examined through an optical microscope and field emission scanning electron microscopy equipped with an energy-dispersive X-ray system. Microhardness, impact, and tensile tests were carried out on the friction-stir-welded specimens. Increasing the plunge depth and reducing the traversal speed resulted in an augmentation of the peak temperature, primarily attributable to higher heat generation. Within the range of process parameters used, the tool produced complex material movement, resulting in swirl-like and vortex-intercalated features, particularly adjacent to the stir zone/workpiece interface. These vortex-like features exhibited dynamically recrystallized fine-grained microstructures. The grain size in the stir zone and the thermo-mechanically affected zone is reduced by increasing the plunge depth and decreasing the traverse speed due to enhanced dynamic recrystallization, subsequently improving the hardness and toughness values. In the stir zone, the microstructure revealed the acicular-shaped bainite ferrite in the DH36 steel and the Widmanstatten ferrite in the UNS G10080 steel. The microhardness contours revealed the uneven hardness distribution across the weld cross-section due to the microstructural heterogeneity in the dissimilar steels. The maximum welding efficiency of 106 % and toughness of 46 J are obtained at 40 mm/min traverse speed with a plunge depth of 0.2 mm, which is attributed to sufficient heat generation and grain refinement.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 384-394"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanuel Olorundaisi , Bukola J. Babalola , Ufoma S. Anamu , Moipone L. Teffo , Ngeleshi Michel Kibambe , Anthony O. Ogunmefun , Peter Odetola , Peter A. Olubambi
{"title":"Phase formation and mechanical analysis of sintered Ni25Al25Co15Fe15Mn8Ti7Cr5 high entropy alloy","authors":"Emmanuel Olorundaisi , Bukola J. Babalola , Ufoma S. Anamu , Moipone L. Teffo , Ngeleshi Michel Kibambe , Anthony O. Ogunmefun , Peter Odetola , Peter A. Olubambi","doi":"10.1016/j.mfglet.2024.09.019","DOIUrl":"10.1016/j.mfglet.2024.09.019","url":null,"abstract":"<div><div>In recent years, the pursuit of cutting-edge materials has intensified, with a focus on affordability, lightweight characteristics, and exceptional performance under high-temperature conditions, to serve as alternatives to Ni-base superalloys and other conventional alloys. Potential materials suitable for high-temperature structural applications with lightweight characteristics are intermetallics such as NiAl, and TiAl, but pose numerous fabrication challenges and poor ductility behaviour at room temperature. In view of this, a novel Ni<sub>25</sub>Al<sub>25</sub>Co<sub>15</sub>Fe<sub>15</sub> Mn<sub>8</sub>Ti<sub>7</sub>Cr<sub>5</sub> high entropy alloy (HEA) was fabricated using spark plasma sintering (SPS). The alloy was developed at a sintering temperature of 850 °C, a heating rate of 90 °C/min, a pressure of 50 MPa, and a dwelling time of 5 min. X-ray diffraction, scanning electron microscopy, and Vickers hardness tester were used to investigate the phase formation, microstructure, and mechanical properties of the HEA, respectively. The microstructure of the sintered HEA shows a homogenous dispersion of the alloying metals. The sintered microstructures showed a mixture of simple and complex phases. The grain size analysis shows that the sintered HEA exhibited a lower grain size of 2.28 µm and a refined crystallite size of 3.159 µm. The microhardness value and relative density of the sintered HEA are 135.8 HV and 99.56 %, respectively.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 153-159"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanuel Olorundaisi , Bukola J Babalola , Ufoma S. Anamu , Moipone L. Teffo , Ngeleshi M. Kibambe , Anthony O. Ogunmefun , Peter Odetola , Peter A. Olubambi
{"title":"Thermo-mechanical and phase prediction of Ni25Al25Co14Fe14Ti9Mn8Cr5 high entropy alloys system using THERMO-CALC","authors":"Emmanuel Olorundaisi , Bukola J Babalola , Ufoma S. Anamu , Moipone L. Teffo , Ngeleshi M. Kibambe , Anthony O. Ogunmefun , Peter Odetola , Peter A. Olubambi","doi":"10.1016/j.mfglet.2024.09.020","DOIUrl":"10.1016/j.mfglet.2024.09.020","url":null,"abstract":"<div><div>This study focuses on predicting phases and thermo-mechanical properties of NiAl-Ti-Mn-Co-Fe-Cr High Entropy Alloys (HEAs) using THERMOCALC software version 2021b with the TCHEA5 HEAs database. The thermodynamic simulation was used to investigate the phase formation and total hardness of the HEAs. The thermodynamic simulation result shows the presence of three major phases at room temperature, namely, BCC, SIGMA, and HEUSLER phases, with the BCC having a higher percentage of volume fraction of 62.4%. The activity of all components at high temperatures was studied, and the study shows Ni and Al to be stable at high temperatures, implying excellent mechanical properties are expected at high temperatures. The predicted total hardness is given as 96.2 HV.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 160-169"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of oscillatory magnetic field-assisted finishing of directed energy deposition NASA HR-1 integral channels","authors":"Kateland Hutt , Justin Rietberg , Paul Gradl , Hitomi Yamaguchi","doi":"10.1016/j.mfglet.2024.09.085","DOIUrl":"10.1016/j.mfglet.2024.09.085","url":null,"abstract":"<div><div>Additive manufacturing (AM), such as directed energy deposition (DED), enables fabrication of complex geometries for critical parts at near-net shape, but creates a need for post-processing to achieve desired geometry and performance. In particular, parts made using DED are sometimes printed with a high initial surface roughness, requiring post-processing to meet application-dependent requirements. Magnetic field-assisted finishing (MAF), in which a magnetic polishing tool is manipulated by magnetic force and generates relative motion against a target surface, has been applied to smooth AM parts. An advantage of MAF is that the magnetically manipulated polishing tools can finish both external part surfaces and part interiors. In this paper, an oscillating magnetic polishing tool is proposed to smooth the inner surfaces of rectangular NASA HR-1 alloy channels made using DED. Because effective tool motion allows reduction of surface roughness and waviness, parameters that control polishing-tool motion are of great interest. This paper describes three parameters that control polishing-tool motion: number of polishing tools, magnetic field, and abrasive slurry. The effects of tool motion on the polishing characteristics are demonstrated, showing that the roughness of the interior channel surface can be reduced from several tens of micron to a sub-micron level.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 670-678"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A qualitative validation of an in-situ monitoring system for EHD inkjet printing via laser diffraction","authors":"Xuepeng Jiang, Pengyu Zhang, Hantang Qin","doi":"10.1016/j.mfglet.2024.09.029","DOIUrl":"10.1016/j.mfglet.2024.09.029","url":null,"abstract":"<div><div>Electrohydrodynamic inkjet printing enables high-resolution patterning for nano features. In-flight dynamics of EHD inkjet printing play an essential role in the quality control of printing results. We applied a laser diffraction/scattering in-situ analyzing setup for the EHD inkjet printing system to replace the zoom lens and high-speed camera imaging system. In contrast to conventional imaging systems, the laser diffraction/scattering system is based on analyzing the diffraction pattern and scattering intensity, respectively, which provided higher resolution for micro-scale jetting measurement and enabled sub-micron level jetting correlation between the voltage applied to the electrode and printing results. Furthermore, Taylor cone information from the nozzle head could also be analyzed in real-time to make adjustments to the printing process. In this work, we successfully validated the feasibility of laser diffraction analysis in-situ monitoring for EHD inkjet printing at micron and sub-micron levels.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 248-252"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shafahat Ali , Vijayant Mehra , Abdelkrem Eltaggaz , Ibrahim Deiab , Salman Pervaiz
{"title":"Optimization and prediction of additively manufactured PLA-PHA biodegradable polymer blend using TOPSIS and GA-ANN","authors":"Shafahat Ali , Vijayant Mehra , Abdelkrem Eltaggaz , Ibrahim Deiab , Salman Pervaiz","doi":"10.1016/j.mfglet.2024.09.099","DOIUrl":"10.1016/j.mfglet.2024.09.099","url":null,"abstract":"<div><div>Recent years have seen the proliferation of fused deposition modeling (FDM) as a means of manufacturing biodegradable products, for different applications such as rigid packaging, agricultural and biomedical. Blends of Polyhydroxyalkanoates (PHA) and polylactic acid (PLA) have been investigated to ascertain their prospective applications through FDM. This paper includes three parameters that affect the build process: layer height, nozzle temperature, and flow rate. 3D printed PLA/PHA can be characterized mechanically, and process parameters can be optimized to maximize design functionality. The experimental setup utilized a Taguchi L9 design, and TOSPIS was employed to optimize the output results. Using TOPSIS analysis, 0.2 mm layer thickness, 195 °C nozzle temperature, and 100 % flow rate were found to be the most optimal initiation parameters. The Taguchi analysis was used to analyze the output responses, and it was found that layer height had the greatest influence on mechanical properties, followed by flow rate and nozzle temperature. The percentage elongation at break has been improved significantly by adding PHA i.e., 170 % compared to PLA (5–10 %). This paper presents a framework for in-depth mechanical characterization of PLA-PHA 3D-printed parts, along with methods for optimizing process parameters to achieve optimal performance, as well as tools for modeling output responses using GA-ANN with an accuracy of 95 %.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 795-802"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predictive models for 3D inkjet material printer using automated image analysis and machine learning algorithms","authors":"Mutha Nandipati, Michael Ogunsanya, Salil Desai","doi":"10.1016/j.mfglet.2024.09.101","DOIUrl":"10.1016/j.mfglet.2024.09.101","url":null,"abstract":"<div><div>Additive manufacturing (AM) is a smart manufacturing process to fabricate components with high precision, minimal post-processing, and increased component complexity in a variety of materials. This research focuses on developing automated image analysis and predictive models for a widely used 3D material inkjet printing (IJP) process. The interplay of four input process parameters, which include frequency, voltage, temperature, and meniscus vacuum, on the output metrics of the inkjet printer was evaluated using statistical measures (ANOVA). Droplet types were classified as no drop, satellite drop, and normal drop using four machine learning classifiers, including random forest, support vector classifier, k-nearest neighbor, and decision trees. Hyperparameter tuning was performed for each model for over 486 data points. Regression predictive models were developed for both ink droplet velocity and volume with three linear models (linear, lasso, and ridge regression) and four non-linear models (random forest, decision tree, support vector regression, and k-nearest neighbor). Mean squared error and the coefficient of determination, r-squared value, were used to evaluate the performance of the predictive models. For the drop type classification models, k-fold of 5 yielded the highest accuracy for the RF, KNN, and DT models of around 98%. Similarly, for the regression based predictive models RF, DT and KNN accuracy results ranged from 97 to 99%. All the machine learning models were validated with experimental data with high prediction accuracies accuracy. This research serves as a foundation for developing design guidelines for 3D material inkjet printing with applications in biosensors, flexible electronics, and regenerative tissue engineering.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 810-821"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the use of 3D printed tools for electrochemical machining: Lessons learned and future improvements","authors":"Rhett Jones, Robert Prins, Jack Zhao","doi":"10.1016/j.mfglet.2024.09.062","DOIUrl":"10.1016/j.mfglet.2024.09.062","url":null,"abstract":"<div><div>This paper describes the use of 3D printing in the production of tool electrodes for use in electrochemical machining (ECM). The majority of ECM jobs require the use of a unique form tool, production of which represents a significant expense. Additive manufacturing processes such as 3D printing offer the potential to lower cost of production and allow design of more complex tool electrode geometries. The tool electrodes used in this research effort were printed in polylactic acid (PLA) and subsequently fit with a copper electrode to serve as the electrical connection terminal for the tool. The tool surface intended for use as the electrode for ECM was coated with an electrically conductive paint before being copper electroplated to form a conductive surface. These 3D printed tool electrodes were successfully demonstrated to machine hardened tool steel in a prototype ECM machine, although challenges remain. This paper describes the development of ECM tools from 3D printed tool blanks, the prototype ECM system that was constructed to demonstrate use of the tool blanks, and the results of applying the 3D printed blanks to machine hardened tool steel. Next steps including potential improvements to tool electrodes are also discussed.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 513-517"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}