在制粉作业中实现 5G 工艺监控的可行性

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Liwen Hu , Baihui Chen , ElHussein Shata , Shashank Shekhar , Charif Mahmoudi , Ivan Seskar , Qingze Zou , Y.B. Guo
{"title":"在制粉作业中实现 5G 工艺监控的可行性","authors":"Liwen Hu ,&nbsp;Baihui Chen ,&nbsp;ElHussein Shata ,&nbsp;Shashank Shekhar ,&nbsp;Charif Mahmoudi ,&nbsp;Ivan Seskar ,&nbsp;Qingze Zou ,&nbsp;Y.B. Guo","doi":"10.1016/j.mfglet.2024.09.024","DOIUrl":null,"url":null,"abstract":"<div><div>5G monitoring holds immense potential for revolutionizing manufacturing processes by enabling real-time data transmission, remote control, enhanced quality control, and increased efficiency. However, it also presents challenges related to 5G monitoring infrastructure. To explore 5G’s potential for process monitoring, this study introduces a novel 5G-enabled architecture designed to address the challenges, enhancing the process monitoring’s efficiency, accuracy, and reliability in the case of milling operation. To investigate the feasibility of this sophisticated 5G network for process monitoring, two testbeds, i.e., the 5G robotic milling testbed and the 5G CNC milling testbed, have been developed. An accelerometer and a laser scanner have been retrofitted with 5G communications capability to capture critical process signals in the testbeds, respectively. It has shown that the sensor data can be upstreamed to a 5G edge server for data analytics and visualization in ultra-low latency. This work highlights the transformative impact of 5G communication on process monitoring for time-critical manufacturing.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 200-207"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of 5G-enabled process monitoring in milling operations\",\"authors\":\"Liwen Hu ,&nbsp;Baihui Chen ,&nbsp;ElHussein Shata ,&nbsp;Shashank Shekhar ,&nbsp;Charif Mahmoudi ,&nbsp;Ivan Seskar ,&nbsp;Qingze Zou ,&nbsp;Y.B. Guo\",\"doi\":\"10.1016/j.mfglet.2024.09.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>5G monitoring holds immense potential for revolutionizing manufacturing processes by enabling real-time data transmission, remote control, enhanced quality control, and increased efficiency. However, it also presents challenges related to 5G monitoring infrastructure. To explore 5G’s potential for process monitoring, this study introduces a novel 5G-enabled architecture designed to address the challenges, enhancing the process monitoring’s efficiency, accuracy, and reliability in the case of milling operation. To investigate the feasibility of this sophisticated 5G network for process monitoring, two testbeds, i.e., the 5G robotic milling testbed and the 5G CNC milling testbed, have been developed. An accelerometer and a laser scanner have been retrofitted with 5G communications capability to capture critical process signals in the testbeds, respectively. It has shown that the sensor data can be upstreamed to a 5G edge server for data analytics and visualization in ultra-low latency. This work highlights the transformative impact of 5G communication on process monitoring for time-critical manufacturing.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"41 \",\"pages\":\"Pages 200-207\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846324000816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324000816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

5G 监控通过实现实时数据传输、远程控制、强化质量控制和提高效率,在彻底改变制造流程方面具有巨大的潜力。然而,它也带来了与 5G 监控基础设施相关的挑战。为了探索 5G 在流程监控方面的潜力,本研究介绍了一种新型 5G 架构,旨在应对挑战,提高铣削操作中流程监控的效率、准确性和可靠性。为了研究这种复杂的 5G 网络用于过程监控的可行性,我们开发了两个测试平台,即 5G 机器人铣削测试平台和 5G 数控铣削测试平台。加速度计和激光扫描仪加装了 5G 通信功能,可分别捕捉试验台中的关键过程信号。研究表明,传感器数据可以上传到 5G 边缘服务器,以超低延迟进行数据分析和可视化。这项工作凸显了 5G 通信对时间关键型制造过程监控的变革性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility of 5G-enabled process monitoring in milling operations
5G monitoring holds immense potential for revolutionizing manufacturing processes by enabling real-time data transmission, remote control, enhanced quality control, and increased efficiency. However, it also presents challenges related to 5G monitoring infrastructure. To explore 5G’s potential for process monitoring, this study introduces a novel 5G-enabled architecture designed to address the challenges, enhancing the process monitoring’s efficiency, accuracy, and reliability in the case of milling operation. To investigate the feasibility of this sophisticated 5G network for process monitoring, two testbeds, i.e., the 5G robotic milling testbed and the 5G CNC milling testbed, have been developed. An accelerometer and a laser scanner have been retrofitted with 5G communications capability to capture critical process signals in the testbeds, respectively. It has shown that the sensor data can be upstreamed to a 5G edge server for data analytics and visualization in ultra-low latency. This work highlights the transformative impact of 5G communication on process monitoring for time-critical manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信