{"title":"Wire arc additive manufacturing of stainless steel/aluminum bi-metal using roll-bonded transition joint","authors":"Ashkaan Ozlati, Mojtaba Movahedi, Habibollah Ramezani","doi":"10.1016/j.mfglet.2024.11.004","DOIUrl":"10.1016/j.mfglet.2024.11.004","url":null,"abstract":"<div><div>Wire arc additive manufacturing was employed to produce an AISI316L stainless steel/AA5183 aluminum bi-metal wall using a bi-layer steel/aluminum transition joint fabricated by roll bonding. The transition joint was utilized to minimize the contact between molten aluminum and steel. The study explored the effect of three heat-input levels used for aluminum deposition on the microstructure and mechanical performance of the steel/aluminum interface in the wall. At the minimum heat-input, no defects or Al-Fe intermetallic compounds were observed at the interface, resulting in the highest bi-metal wall fracture strength (∼42 MPa) due to the absence of brittle intermetallic compounds.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"43 ","pages":"Pages 6-11"},"PeriodicalIF":1.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyle Nelson , Alastair Conway , Kadir Paslioglu , Mykola Kulakov , David Milliken
{"title":"Analytical forming forces in two roller flow forming","authors":"Kyle Nelson , Alastair Conway , Kadir Paslioglu , Mykola Kulakov , David Milliken","doi":"10.1016/j.mfglet.2024.11.001","DOIUrl":"10.1016/j.mfglet.2024.11.001","url":null,"abstract":"<div><div>This paper presents a comprehensive model for calculating forming forces in two-roller flow forming using the upper-bound method. The model incorporates roller design parameters such as tip radius and attack angle, accurately defining the contact surface and including all relevant forming parameters. Experimental validation on a WF VUD 600 vertical former demonstrates the model’s predictive capability, with force measurements compared to theoretical values. Statistical analyses indicate strong correlations between predicted and actual forces, highlighting the model’s effectiveness.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"43 ","pages":"Pages 18-26"},"PeriodicalIF":1.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solomon-Oshioke Agbedor , Hong Wu , DongHui Yang , Ian Baker
{"title":"Inhibiting grain boundary cracking in laser additively-manufactured MoNbTaVTiCu refractory complex concentrated alloys by tuning the Cu/Ti content","authors":"Solomon-Oshioke Agbedor , Hong Wu , DongHui Yang , Ian Baker","doi":"10.1016/j.mfglet.2024.10.008","DOIUrl":"10.1016/j.mfglet.2024.10.008","url":null,"abstract":"<div><div>Refractory complex concentrated alloys (RCCAs) have been proposed for extreme service applications due to their microstructural stability and excellent mechanical properties over a wide temperature range. However, printing MoNbTaV-based RCCAs by laser additive manufacturing can be challenging on account of the severe solidification cracking that occurs along grain boundaries (GBs), leading to poor mechanical strength. In this brief report, we describe a crack-free MoNbTaVTi<em><sub>x</sub></em>Cu<em><sub>y</sub></em> RCCA produced through compositional adjustment that leverages a Cu-Ti phase to suppress GB cracking. Printed and annealed specimen exhibited both good mechanical strengths and<!--> <!--> thermal conductivities.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"43 ","pages":"Pages 12-17"},"PeriodicalIF":1.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anurag Pisupati , Axel Boivin , Alexandre Beigbeder , Roi Méndez-Rial , Ronan Le Goff
{"title":"Applicability of circularity protocols to extend the lifetime of a thermoplastic pultrusion line: A case study","authors":"Anurag Pisupati , Axel Boivin , Alexandre Beigbeder , Roi Méndez-Rial , Ronan Le Goff","doi":"10.1016/j.mfglet.2024.10.002","DOIUrl":"10.1016/j.mfglet.2024.10.002","url":null,"abstract":"<div><div>This study explores the applicability of circular economy protocols (CEP) to refurbish an old pultrusion machine in line with Industry 4.0 standards, aiming to optimize resource use, reduce waste, and extend equipment life at large scale. Incorporation of CEP seeks to revolutionize the conventional refurbishment model in manufacturing industries, creating a sustainable technological advanced framework that promotes economic viability and environmental responsibility. These protocols assure a significant reduction of investments costs (−62%) and ensure real-time monitoring and adaptive control systems to enhance operational efficiency of the machine. A significant improvement in overall equipment effectiveness by 74% and reduction in waste by 23%. Lastly, various steps of integration of CEP in the modernization of old machinery, contributing significantly to their operability and functionality in a real industrial scenario are discussed.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"42 ","pages":"Pages 56-60"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scalable and efficient fabrication of surface microstructures using a small wheeled robot with a vibration-cutting tool","authors":"Peiyuan Ding , Jianfu Zhang , Pingfa Feng , Xiangyu Zhang , Jianjian Wang","doi":"10.1016/j.mfglet.2024.10.004","DOIUrl":"10.1016/j.mfglet.2024.10.004","url":null,"abstract":"<div><div>Bioinspired microstructure emerges as a powerful technique to enhance the surface functionalities and properties in a seizes of breakthrough areas. However, its application is limited by the scalability of fabrication methods. This study introduces a scalable fabrication technique utilizing a small wheeled robot designed to operate on a workpiece surface. Due to its unique three-point-support design, the robot maintains a stable cutting depth and exhibits high adaptability to large-scale workpieces. Motion stability is calibrated using a laser displacement sensor, achieving a maximum velocity of approximately 3.7 mm/s. Finally, the robot successfully produces microstructures with a height of 8 μm on aluminum workpieces, demonstrating its promising capacity.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"42 ","pages":"Pages 46-51"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Feasibility study of using friction stir extruded recycled aluminum rods for welding and additive manufacturing","authors":"G.H.S.F.L. Carvalho , G. Campatelli , L. Fratini","doi":"10.1016/j.mfglet.2024.10.007","DOIUrl":"10.1016/j.mfglet.2024.10.007","url":null,"abstract":"<div><div>Friction stir extrusion (FSE) is a promising process capable of producing rods by recycling aluminum chips without melting them. This work studied the use of these recycled rods for GTAW deposition and additive manufacturing. The rods are suitable for single-bead depositions or applications with reduced use of filler material. For additive manufacturing multilayer depositions, the component presented a density of 77% (23% porosity), so pollutant sources must be further reduced to improve quality. The work shows that porosity significantly changes along the height, being about 10% close to the substrate, and about 45% next to the upper surface.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"42 ","pages":"Pages 52-55"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum to “Evaluating the environmental impacts of brick production from waste plastic” [Manufact. Lett. 41 (2024) 1683–1695]","authors":"Muhammad Saad Amjad, Nancy Diaz-Elsayed","doi":"10.1016/j.mfglet.2024.10.005","DOIUrl":"10.1016/j.mfglet.2024.10.005","url":null,"abstract":"","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"42 ","pages":"Page 61"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143092928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruan Diego Amorim de Melo Vieira , Olga Liskevych , Déborah de Oliveira , Maksym Ziberov
{"title":"Influence of parameter variation and interlayer temperature control in wall angle, curvature and measurement methodology of ER70S-6 parts obtained by WAAM","authors":"Ruan Diego Amorim de Melo Vieira , Olga Liskevych , Déborah de Oliveira , Maksym Ziberov","doi":"10.1016/j.mfglet.2024.10.006","DOIUrl":"10.1016/j.mfglet.2024.10.006","url":null,"abstract":"<div><div>Wire and Arc Additive Manufacturing is characterized for the high deposition rates, enabling the manufacturing of big, complex parts, with smaller relative production cost. However, once the part receives high heat inputs, leading to geometry variation and deformations, it is important to properly measure the part characteristics. Therefore, this work contributes with a measurement methodology for inclined walls deposited by Wire and Arc Additive Manufacturing and its application on walls deposited with different parameters. The main parameter of influence was the use of interlayer temperature control, which increased the angle in 71.0%, and the curvature in 90.3%, lower part.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"42 ","pages":"Pages 40-45"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohd Aslam , Guddakesh Kumar Chandan , Brajesh Kumar Kanchan
{"title":"Hard and wear resistant AISI304 stainless steel clad layer deposited on mild steel substrate by TIG cladding","authors":"Mohd Aslam , Guddakesh Kumar Chandan , Brajesh Kumar Kanchan","doi":"10.1016/j.mfglet.2024.10.003","DOIUrl":"10.1016/j.mfglet.2024.10.003","url":null,"abstract":"<div><div>In this study, mild steel was cladded with preplaced AISI304 stainless steel wire using a tungsten inert gas (TIG) heat source to enhance its hardness and wear resistance. The microstructure, hardness, and tribological properties of clad layer were examined. Results showed the microstructure comprised phases like dendrite, cellular, and columnar dendrite, along with austenite dendrite at the interface. Microhardness ranged from 275.61HV<sub>.5</sub> to 334.96HV<sub>.5</sub>, while the substrate measured 176.94HV<sub>.5</sub>. The clad layer exhibited a wear rate between 57 µm and 70 µm, with substrate at 146 µm. XRD analysis revealed hard carbides and intermetallic compounds with Cr and Ni, enhancing hardness.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"42 ","pages":"Pages 34-39"},"PeriodicalIF":1.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing mechanical properties of dissimilar steel A-TIG weld joint by in-situ induction post-heating","authors":"Pratishtha Sharma , Dheerendra Kumar Dwivedi","doi":"10.1016/j.mfglet.2024.09.201","DOIUrl":"10.1016/j.mfglet.2024.09.201","url":null,"abstract":"<div><div>An approach is proposed to enhance the mechanical properties (ductility and impact toughness) of dissimilar martensitic steel-austenitic stainless steel joint by ‘A-TIG welding with induction post-heating (A-TIG<sub>(I)</sub> welding)’. The A-TIG<sub>(I)</sub> welding mitigates the martensite formation and promotes the ferrite formation within the weld zone (WZ) by retarding the cooling rate (from 9.83 °C/s to 0.8 °C/s). Microstructural transformations enabled in achieving the improved ductility (44.9 %) without significant loss of strength (665.75 MPa). Overmatched impact toughness (103 ± 2) J of WZ was also obtained.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"42 ","pages":"Pages 30-33"},"PeriodicalIF":1.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}