基于迁移学习的电阻点焊虚拟过程传感变压器

IF 2 Q3 ENGINEERING, MANUFACTURING
Ethan York , Xijia Zhao , Hassan Ghessemi-Armaki , Blair Carlson , Peng Wang
{"title":"基于迁移学习的电阻点焊虚拟过程传感变压器","authors":"Ethan York ,&nbsp;Xijia Zhao ,&nbsp;Hassan Ghessemi-Armaki ,&nbsp;Blair Carlson ,&nbsp;Peng Wang","doi":"10.1016/j.mfglet.2025.06.199","DOIUrl":null,"url":null,"abstract":"<div><div>Resistance Spot Welding (RSW) is a crucial manufacturing process, especially in automotive manufacturing. However, quality assurance in RSW remains a challenge, due to the lack of low-cost, non-invasive process sensing techniques. This paper investigates Transformer for generating virtual electrode force and displacement signals from physically measurable DR signals. Furthermore, to enhance the generalizability, the transformer has been enhanced by transfer learning to adapt to dynamic welding scenarios, by pre-training the transformer model with data from diverse welding conditions and fine-tuning using minimal experimental data from novel conditions. Experimental results validate the effectiveness of virtual sensing technology for RSW process monitoring.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"45 ","pages":"Pages 13-16"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning-enhanced transformer for virtual process sensing in resistance spot welding\",\"authors\":\"Ethan York ,&nbsp;Xijia Zhao ,&nbsp;Hassan Ghessemi-Armaki ,&nbsp;Blair Carlson ,&nbsp;Peng Wang\",\"doi\":\"10.1016/j.mfglet.2025.06.199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resistance Spot Welding (RSW) is a crucial manufacturing process, especially in automotive manufacturing. However, quality assurance in RSW remains a challenge, due to the lack of low-cost, non-invasive process sensing techniques. This paper investigates Transformer for generating virtual electrode force and displacement signals from physically measurable DR signals. Furthermore, to enhance the generalizability, the transformer has been enhanced by transfer learning to adapt to dynamic welding scenarios, by pre-training the transformer model with data from diverse welding conditions and fine-tuning using minimal experimental data from novel conditions. Experimental results validate the effectiveness of virtual sensing technology for RSW process monitoring.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"45 \",\"pages\":\"Pages 13-16\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846325002366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325002366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

电阻点焊(RSW)是一种至关重要的制造工艺,特别是在汽车制造中。然而,由于缺乏低成本、非侵入性的过程传感技术,RSW的质量保证仍然是一个挑战。本文研究了从物理可测DR信号中产生虚拟电极力和位移信号的变压器。此外,为了增强通用性,通过迁移学习来增强变压器以适应动态焊接场景,通过使用来自不同焊接条件的数据预训练变压器模型并使用来自新条件的最小实验数据进行微调。实验结果验证了虚拟传感技术在RSW工艺监控中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning-enhanced transformer for virtual process sensing in resistance spot welding
Resistance Spot Welding (RSW) is a crucial manufacturing process, especially in automotive manufacturing. However, quality assurance in RSW remains a challenge, due to the lack of low-cost, non-invasive process sensing techniques. This paper investigates Transformer for generating virtual electrode force and displacement signals from physically measurable DR signals. Furthermore, to enhance the generalizability, the transformer has been enhanced by transfer learning to adapt to dynamic welding scenarios, by pre-training the transformer model with data from diverse welding conditions and fine-tuning using minimal experimental data from novel conditions. Experimental results validate the effectiveness of virtual sensing technology for RSW process monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信