Oscar Guevara-Mansilla , Tomás A. Peña-Alonso , René Ventura-Houle , Salvador Ibarra-Martínez , Blanca Lizeth Cristobal-Francisco
{"title":"Delimitation of potential zones for groundwater recharge and discharge in the Guayalejo–Tamesi River Basin, southern Tamaulipas, Mexico","authors":"Oscar Guevara-Mansilla , Tomás A. Peña-Alonso , René Ventura-Houle , Salvador Ibarra-Martínez , Blanca Lizeth Cristobal-Francisco","doi":"10.1016/j.gsd.2025.101439","DOIUrl":"10.1016/j.gsd.2025.101439","url":null,"abstract":"<div><div>The Guayalejo–Tamesi River Basin (GTB) has suffered from water scarcity mainly due to aquifer overexploitation, limited understanding of the surface water – groundwater relationship, and poor water resource management. Given this, appropriate land use can be a decisive factor in sustainable water management. In this context, the present study focuses on delineating potential groundwater recharge zones (PGRZ) and discharge zones (PGDZ) to achieve an overview of groundwater flow systems and thus preserve areas of hydrogeological importance. This analysis was conducted using a Geographic Information System (GIS), integrating satellite data, geophysical information, and terrain surface characteristics. Based on these databases, ten hydrogeological variables were obtained and assessed using an Analytical Hierarchy Process (AHP) based on Groundwater Flow System Theory (GFST) criteria. This resulted in two mathematical models estimating that 37.71 % and 11.78 % of the GTB exhibit PGRZ and PGDZ conditions, respectively. The models were validated by comparing the delineation of PGRZ and PGDZ with the locations of 222 springs and the chemistry of 30 groundwater samples, showing an accuracy of 75 % for the PGRZ calculation and 70 % for the PGDZ model. The model proved sufficiently accurate for identifying small PGRZ and PGDZ, thus providing a regional understanding of hydrogeological characteristics and groundwater flow dynamics at a local resolution.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101439"},"PeriodicalIF":4.9,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143643127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose David Henao Casas , Enrique Fernández Escalante , Juan Carlos Richard-Cerda , Francisco Ayuga
{"title":"A nature-based solution to enhance aquifer recharge: Combining trees and infiltration basins","authors":"Jose David Henao Casas , Enrique Fernández Escalante , Juan Carlos Richard-Cerda , Francisco Ayuga","doi":"10.1016/j.gsd.2025.101436","DOIUrl":"10.1016/j.gsd.2025.101436","url":null,"abstract":"<div><div>Managed aquifer recharge (MAR) is the replenishment of aquifers for environmental recovery or later use of the stored water. Under increasing occurrence of hydrological extremes, it shows great potential to buffer water availability. Nonetheless, these systems are affected by clogging, which decreases the infiltration rates over time. To deal with this issue and evaluate the potential to enhance recharge, we studied the effect of poplars (Populus Nigra predominantly) on two infiltration basins in a MAR system in central Spain, namely Santiuste (ST) and La Laguna del Señor (LS). The hypothesis is that plant roots can increase infiltration rates and counteract the effect of clogging through macropore formation and changes in soil characteristics. To this end, we conducted eight on-site infiltration test campaigns over two years in areas with and without trees, in addition to determining bulk density, organic carbon content and soil textures. We also built a 1-D vadose zone model and compared measured steady-state infiltration rates (SSIR) with theoretical values. When compared to bare soil, areas with trees show higher SSIR (37 % difference on average), higher organic carbon content (113 % difference on average), and lower bulk density (38 % difference on average). In all cases, measured SSIR values were larger than theoretical values, meaning that textures alone cannot explain local infiltration rates. Moreover, the difference between theoretical and measured SSIR is larger in trees than in bare soil by 40 % in ST and 198 % in LS. The 1-D vadose zone model shows that in the area studied, the transpiration by trees is largely offset by the additional recharge due to enhanced soil infiltration rates. These results suggest that trees increase infiltration rates, likely due to macropores and aggregate formation and the rearrangement of the soil structure. This nature-based solution could be extended to other MAR water-spreading methods and in-channel modifications.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101436"},"PeriodicalIF":4.9,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143748638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Berenice Zapata-Norberto , Eric Morales-Casique , René Contreras-Galván , José A. Ramos-Leal
{"title":"Land subsidence in Mexico City: New insights from field data and numerical modeling","authors":"Berenice Zapata-Norberto , Eric Morales-Casique , René Contreras-Galván , José A. Ramos-Leal","doi":"10.1016/j.gsd.2025.101432","DOIUrl":"10.1016/j.gsd.2025.101432","url":null,"abstract":"<div><div>Water supply to Mexico City relies mainly on groundwater from a regional aquifer overlain by highly compressible lacustrine sediments. Intensive pumping has originated land subsidence, threatening water supply and damaging urban infrastructure. A research site where the thickness of the aquitard reaches 100 m, was instrumented with piezometers, benchmarks and extensometers and monitored for 10 years. Data are analyzed to understand the main drivers and quantify their contribution to the process of land subsidence in Mexico City. Total settlement amounted to 3.661 m, at an average rate of 0.314 m/year. Increase in total stress due to new infrastructure built near the site (a highway) at the start of the monitoring period amounts for 35% of the observed total settlement; this deformation takes place from 0 to 36 m within the aquitard, where pore pressure maintained a hydrostatic distribution. Our analysis shows that the main driver for land subsidence is groundwater pumping from the regional aquifer as most of the deformation due to consolidation (2.128 m) was registered below a depth of 82 m. Since the thickness of the aquitard at the research site is 100 m, numerical simulation shows that most of this deformation most probably takes place at interbedded compressible lenses within the regional aquifer. Future modeling efforts in Mexico City need to consider this process.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101432"},"PeriodicalIF":4.9,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143629261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arshad Ashraf, Muhammad Bilal Iqbal, Ali Kamran, Naveed Mustafa
{"title":"Prospecting high-altitude springs in the Upper Indus Basin, Pakistan: Knowledge towards policy development","authors":"Arshad Ashraf, Muhammad Bilal Iqbal, Ali Kamran, Naveed Mustafa","doi":"10.1016/j.gsd.2025.101437","DOIUrl":"10.1016/j.gsd.2025.101437","url":null,"abstract":"<div><div>Natural springs form a significant source of clean water for a large number of mountain communities in the Hindu Kush, Karakoram and Himalaya (HKH) region. Adequate knowledge and understanding of this resource are lacking in this region where water demand has already been increased manifold owing to growing urbanization and climate change. In the present study, prospects of springs have been investigated under different physiographic conditions in the HKH region of Upper Indus Basin, Pakistan for sustainable water resource management. Among 3864 springs identified in the region, a maximum of about 14.9 % springs lie within 1500–2000 m elevation range followed by 14.8 % within 1000–1500 m and 14 % within 3500–4000 m range. A maximum of 1612 springs were observed over high mountains (>3000 m), followed by 927 springs over low mountains (1200–2000 m) and 842 over middle mountains (2000–3000 m). The spring density was observed maximum in the Himalaya (i.e., 0.05 springs/km<sup>2</sup>) followed by the Hindu Kush range (i.e., 0.04 springs/km<sup>2</sup>) and the Karakoram range (i.e., 0.01 springs/km<sup>2</sup>). Overall the density was found to be over 0.03 springs/km<sup>2</sup> in the three HKH ranges. The spring indicated a positive relationship with annual rainfall (R<sup>2</sup> value 0.79) highlighting the influence of rainfall in sustaining spring resource in the area. The adoption of an integrated water resource management approach and efficient water use are essential to sustain spring resource in this mountainous region. In-depth research on the hydrodynamic characteristics of springs is essential in the context of changing climate and land use to meet growing water demands and improve communities’ livelihoods in the HKH region in future.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101437"},"PeriodicalIF":4.9,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143629262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jino Lawrence , Narayanan Natarajan , Mohanadhas Berlin , Alagarsamy Vanav Kumar , Swapnali Doley , Vasudevan Mangottiri
{"title":"Temporal Fractionation Models for Depicting Mass Transfer Limiting Conditions of Multispecies Transport in Porous Media","authors":"Jino Lawrence , Narayanan Natarajan , Mohanadhas Berlin , Alagarsamy Vanav Kumar , Swapnali Doley , Vasudevan Mangottiri","doi":"10.1016/j.gsd.2025.101438","DOIUrl":"10.1016/j.gsd.2025.101438","url":null,"abstract":"<div><div>Numerical modeling is widely recognized as the most flexible and reliable method for predicting the flow and transport of contaminants in the sub-surface under highly heterogenous and complex environment. Many times, the classical advection-dispersion model needs to be customarily modified and solved in order to address these complexities in porous media at least in Darcy-scale domain. This is particularly crucial when different mass transfer processes happen at different rates and temporal scales. In an attempt to depict the limiting conditions of multispecies mass transfer within the temporal scales, the present study simulates the fractional mass transfer phenomena in porous media by considering different levels of time fractionation by solving a set of partial differential equations using finite difference method. The incorporation of the time fractionation provides new insights to the solute transport behavior in complex systems, highlighting the changes in the temporal concentration profiles and tailing phenomena. Further, the sensitivity of the flow and transport parameters such as flow velocity, dispersion coefficient, retardation coefficient and contaminant reaction rates are found to be enhanced within the flow domain. Based on the direct proportion observed between the time fractionation scale and the contaminant propagation level (in terms of peak and skewness), the present study postulates the significance of design and adjustment of suitable temporal fractionation for accurately profiling multi-species transport in different types of porous domains.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101438"},"PeriodicalIF":4.9,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of precipitation changes and human activities on surface flow in an arid region of Southern Iran","authors":"Maryam Heydarzadeh , Nasim Ghashghaeizadeh , Hamidreza Kamali , Sajad Jamshidi","doi":"10.1016/j.gsd.2025.101434","DOIUrl":"10.1016/j.gsd.2025.101434","url":null,"abstract":"<div><div>The management of water resources within basins has become increasingly complex as a result of the dual pressures of escalating drought conditions and human activities. The Minab River Basin, situated in southern Iran, is acknowledged as one of the most extensive basins in the area. Water resources in the area have been reduced significantly as a result of decreases in the flow of the river. Besides drought, human activities were a key factor in decreasing the river discharge. The main object of this research is to assess the effects of various drought-related factors alongside human activities on the water resources surface in from 1995 to 2021. It used statistical analysis to investigate changes in aquifer water and surface flow. Also, meteorological and hydrological drought data were measured by the Standard Precipitation Index (SPI) and Stream Drought Index (SDI). The results show that surface flow decreased by 73% with 32% attributed to climate conditions and the remaining 68 % resulting from human activities. The results obtained also suggest that water levels in the Rudan, Mosafarabad, and Jaghin Tu Kahur aquifers had decreased by 9.47, 8.30, and 16.63 m, respectively, which means the river can no longer receive water from the aquifers. The existence of unauthorized farm dams numbering about 84, the diversion of rivers for floodplain agriculture, and the presence of pits resulting from sand extraction, especially in the Rudan sub-basin are some factors leading to the reduction in water flow into the dam. The presence of dams within river branches during flood events results in a decrease in the volume of water flowing through the rivers. Results show that the effects of water withdrawals on water stress in the basin compared to the climate variability, in which anthropogenic water demand, has increased substantially due to different factors.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101434"},"PeriodicalIF":4.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143792821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing groundwater sustainability: Strategy combining hydro-chemical analysis, pollution mitigation, and community-based water resource governance","authors":"Kusam , Diksha Kumari , Shally Pandit, Pragati Sharma, Arindam Kuila","doi":"10.1016/j.gsd.2025.101433","DOIUrl":"10.1016/j.gsd.2025.101433","url":null,"abstract":"<div><div>This review examines the impact of geochemical and human-induced processes on water composition, evaluates the potential of emerging technologies mainly machine learning for water quality assessment, and underscores the importance of community engagement in groundwater monitoring and management. Water quality is shaped by both natural factors, such as water-rock interactions, and anthropogenic activities, including agricultural practices. Understanding the geochemical factors that regulate water composition is critical for sustainable management. The study of groundwater chemistry, its evolution, and quality is pivotal for detecting changes and guiding effective management strategies. Machine learning techniques offer cost-efficient and reliable tools for evaluating water quality and identifying groundwater zones. A holistic approach to watershed management, emphasizing community involvement and the implementation of best practices, is vital to improving water quality and ensuring long-term sustainability. Additionally, supportive legal frameworks are necessary to promote community-driven efforts in protecting water resources, particularly through enhanced wastewater treatment and sanitation measures. This review aims to bridge the gap between the application of machine learning in water quality assessment and the crucial role of community engagement in monitoring and managing groundwater resources.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101433"},"PeriodicalIF":4.9,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facing groundwater depletion in India: The role of human activities and climate extremes","authors":"Stuti Srivastava , Alka Singh , Dipankar Dwivedi","doi":"10.1016/j.gsd.2025.101430","DOIUrl":"10.1016/j.gsd.2025.101430","url":null,"abstract":"<div><div>India is the largest user of groundwater (GW) globally, supporting approximately 1.4 billion people. In recent decades, negligent GW consumption in India has caused severe overexploitation and unprecedented depletion, necessitating a review to understand its extent, drivers, and broader environmental and socio-economic impacts. This review comprehensively evaluates current measurements and trends in GW depletion, along with its causative factors such as excessive pumping, water footprint, and climate change, and their various implications. We reviewed 160 journal articles, along with supplementary data and reports from GW, agriculture, and meteorological authorities. Our focus was on GW depletion in India, with particular emphasis on GRACE satellite data, <em>in situ</em> observations, and the influence of hydrogeological conditions, anthropogenic activities, and climatic disturbances. GRACE observations reveal significant depletion, particularly in Eastern Uttar Pradesh at 7 cm/yr rate from 2002 to 2022, while localized <em>in situ</em> data highlight Punjab as the most rapidly depleting area, with a rate of 46 cm/yr (2003–2012). The intensification of tube well irrigation, the adoption of water-intensive agricultural practices, and poor water management have exacerbated GW depletion. Additionally, Rajasthan and Punjab exhibit high extreme rainfall trends in July and September, indicating unstable monsoon periods in the region. Despite heavy rainfall causing high runoff, Rajasthan shows notable recharge, likely due to its sandstone aquifers' high permeability. In contrast, Punjab is one of the most critically depleted GW hotspots in the country, driven by high depletion trends, deep tube well intensification, increased extreme events, and reduced rainfall recharge. Finally, based on these findings, the authors document prevailing policies and suggest strategies such as regulatory measures, conservation efforts, comprehensive aquifer assessments, and community-managed resources, to promote sustainable GW management.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101430"},"PeriodicalIF":4.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling groundwater gems: A GIS-powered fusion of AHP and TOPSIS for mapping groundwater potential zones","authors":"S.K. Ray","doi":"10.1016/j.gsd.2025.101431","DOIUrl":"10.1016/j.gsd.2025.101431","url":null,"abstract":"<div><div>Groundwater is indispensable to various sectors like industry, households, and agriculture, yet its assessment remains critical. This research focuses on evaluating potential groundwater zones within the Jamsholaghat watershed, employing a robust geospatial approach. Twelve thematic maps, spanning factors influencing groundwater recharge, namely lithology, drainage density, distance from river, land use and land cover, lineament density, rainfall, hydrological soil group, roughness, geomorphology, topographic position index, slope, and topographic wetness index underwent a multicollinearity check for independence before integration using ArcGIS's weighted overlay analysis. Utilizing a combination of the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) and the Analytical Hierarchy Process (AHP), each thematic map was ranked based on its relative significance in groundwater recharge. The resulting Groundwater Potential Zone (GPZ) map divided the region into high (40%), medium (52%), and low (8%) potential zones. Notably, the easternmost part emerged as the most conducive for recharge, attributed to factors like favorable lithology (laterite and quartz), geomorphological features (water bodies and flood plains), high rainfall, and gentle slope. This insight can inform targeted interventions for sustainable groundwater management. This practical information empowers water resource managers to prioritize exploration efforts. By focusing drilling activities on high-potential zones, success rates can increase, saving time, money, and minimizing environmental impact. Furthermore, understanding recharge-influencing factors can guide land-use practices that promote infiltration, ensuring the long-term sustainability of this vital resource. This research paves the way for informed decision-making, fostering sustainable groundwater management practices within the Jamsholaghat watershed.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101431"},"PeriodicalIF":4.9,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}