Groundwater for Sustainable Development最新文献

筛选
英文 中文
Performance study of the bioreactor for the biodegradation of methyl orange dye by luffa immobilized Stenotrophomonas maltophilia and kinetic studies: A sustainable approach 固定化丝瓜嗜麦芽霉单胞菌生物降解甲基橙染料的生物反应器性能研究和动力学研究:一种可持续的方法
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-11-01 DOI: 10.1016/j.gsd.2024.101378
Anshuman Mishra , Dhananjay Singh , Ram Sharan Singh , Vinay Mishra , Manish Kumar , Balendu Shekher Giri
{"title":"Performance study of the bioreactor for the biodegradation of methyl orange dye by luffa immobilized Stenotrophomonas maltophilia and kinetic studies: A sustainable approach","authors":"Anshuman Mishra ,&nbsp;Dhananjay Singh ,&nbsp;Ram Sharan Singh ,&nbsp;Vinay Mishra ,&nbsp;Manish Kumar ,&nbsp;Balendu Shekher Giri","doi":"10.1016/j.gsd.2024.101378","DOIUrl":"10.1016/j.gsd.2024.101378","url":null,"abstract":"<div><div>The biodegradation of methyl orange dye was examined in a biofilm reactor with luffa immobilized <em>Stenotrophomonas maltophilia</em> ((HE963840.1), low-cost packing material. The bacteria were isolated from the sludge collected from a common effluent treatment plant at IOCL refinery Mathura, Uttar Pradesh. The bacteria were characterized using 16rRNA. The reactor performance was studied at 30 ± 5 °C temperatures over a period of thirty days. The reactor was operated with the flow rates of 60 mL/h, 90 mL/h, 240 mL/h, 360 mL/h and 432 mL/h. The pollutant load ranges from 151.6 mg/(L-day) to 1091 mg/(L-day) and the pH of the dye solution was maintained at 7.0 ± 0.4 during the study. The maximum removal efficiency (RE) and elimination capacity (EC) at steady state were determined as 90.2 % and 658.1 mg/(L-day) respectively. The rate of utilization of the methyl orange dye is described by modified stover-kincannon model with kinetic parameters-maximum utilization rate (U<sub>max</sub>) and saturation constant (K<sub>B</sub>) to be 2.70 g/(L-day) and 2.34 g/(L-day) respectively. The toxicity studies confirm the non-toxic nature of the biodegraded products.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101378"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying the origin, recharge, and salinity sources of the Romqan saline spring, causing intense salinization of the Shirinrud River in southern Iran 确定造成伊朗南部希林鲁德河严重盐碱化的 Romqan 盐化泉的起源、补给和盐度来源
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-11-01 DOI: 10.1016/j.gsd.2024.101370
Jahanshir Mohammadzadeh-Habili , Davar Khalili
{"title":"Identifying the origin, recharge, and salinity sources of the Romqan saline spring, causing intense salinization of the Shirinrud River in southern Iran","authors":"Jahanshir Mohammadzadeh-Habili ,&nbsp;Davar Khalili","doi":"10.1016/j.gsd.2024.101370","DOIUrl":"10.1016/j.gsd.2024.101370","url":null,"abstract":"<div><div>Salinization of originally freshwater rivers by saline springs is a growing threat to availability of water resources in the semiarid region of southern Iran. The problem is further complicated by persistent drought of recent years, which has resulted in prolonged periods of reduced streamflow. This issue has prompted research on possibility of finding practical techniques for flow stoppage of saline springs by investigating their recharge and salinization mechanisms as well as emergence time. To this end, the Shirinrud river in southern Iran is selected as a case study. While this river contains freshwater flow, it is intensively salinized due to annual discharge of ∼110000 tons salt from the Romqan saline spring. Study area streamflow gauges, water sampling, plus field observations and measurements have been used to provide the required data and information. Data analyses included evaluation of temperature variations of study area groundwaters, long-term salinity of the Shirinrud River, and isotopic and hydrochemical compositions of water samples. Results of thermal, isotopic, and hydrochemical tracing methods together with hydrogeological evidences in the Romqan spring site indicated that although the Romqan saline spring is recharging from a fresh groundwater flow, it becomes intensely salinized due to passage of ∼1.7 km of its recharging water pass inside the Romqan salt diapir. Furthermore, sudden drying of a freshwater spring at border of Romqan salt diapir just after the 1999 earthquake in spring site area, resulted in redirection of the fresh groundwater flow of the dried spring into the Romqan salt diapir, followed by emergence of the Romqan saline spring in the Shirinrud River bed. For flow stoppage of the Romqan saline spring, an interceptor drainage system is suggested, which would divert the spring fresh recharging groundwater flow at border of Romqan salt diapir and finally desalinize the Shirinrud River from Romqan saline spring.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101370"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal changes in subsurface characteristics in the Lower Bengal Basin: Potential impacts on groundwater 下孟加拉盆地地下特征的季节性变化:对地下水的潜在影响
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-11-01 DOI: 10.1016/j.gsd.2024.101368
Piya Mohasin , G. Sumanth Kumar , Tanvi Arora , Sujata Ray
{"title":"Seasonal changes in subsurface characteristics in the Lower Bengal Basin: Potential impacts on groundwater","authors":"Piya Mohasin ,&nbsp;G. Sumanth Kumar ,&nbsp;Tanvi Arora ,&nbsp;Sujata Ray","doi":"10.1016/j.gsd.2024.101368","DOIUrl":"10.1016/j.gsd.2024.101368","url":null,"abstract":"<div><div>The risk of groundwater depletion is most significant if anthropogenic withdrawals are high in regions where the subsurface characteristics do not favor surface water infiltration and natural recharge. However, such regions have not been identified systematically in the Indo-Gangetic basin, one of the most fertile alluvial aquifers in the world. This identification may be enabled by a study of how seasonal changes in subsurface characteristics affect groundwater levels. We conducted a resistivity survey in Nanoor block of the Lower Ganges Basin, where groundwater levels have declined steeply in recent decades, to determine how subsurface characteristics controlling infiltration and groundwater quality may change seasonally. Vertical Electrical Soundings (VES) using the Schlumberger electrode array were conducted over an 8 km² area with an electrode spacing of 180-200 meters during the pre-monsoon (April 2018) and post-monsoon (October 2018) seasons. Seasonal variations in the Dar- Zarrouk parameters: longitudinal conductance, transverse resistance, and the coefficient of anisotropy were evaluated. While the average longitudinal conductance remained unchanged across seasons, it increased in certain locations in post-monsoon, indicating potential risks of contamination from the surface. The transverse resistance significantly increased in the post-monsoon, suggesting reduced groundwater potential. Additionally, in some areas, the coefficient of anisotropy indicated increased compaction of overburden layers in the post-monsoon, suggesting decreased natural recharge potential. Finally, the thickness of the unsaturated zone increased significantly from pre-monsoon to post-monsoon, which may be attributed to groundwater withdrawal for irrigation during the Kharif cropping season. These results indicate that this region, heavily reliant on groundwater for irrigation, is characterized by subsurface properties that allow limited natural recharge potential. This study may provide a framework for managing groundwater resources in developing countries where anthropogenic withdrawals are likely to have a more significant impact on groundwater levels than reduced natural recharge due to changing rainfall characteristics.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101368"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global status, risk assessment, and knowledge gaps of microplastics in groundwater: A bibliometric analysis 地下水中微塑料的全球现状、风险评估和知识缺口:文献计量分析
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-11-01 DOI: 10.1016/j.gsd.2024.101375
Laura Sforzi , Chiara Sarti , Saul Santini , Tania Martellini , Alessandra Cincinelli
{"title":"Global status, risk assessment, and knowledge gaps of microplastics in groundwater: A bibliometric analysis","authors":"Laura Sforzi ,&nbsp;Chiara Sarti ,&nbsp;Saul Santini ,&nbsp;Tania Martellini ,&nbsp;Alessandra Cincinelli","doi":"10.1016/j.gsd.2024.101375","DOIUrl":"10.1016/j.gsd.2024.101375","url":null,"abstract":"<div><div>Microplastics pollution is little studied in groundwater, compared to other surface water environments. In this review, bibliometric tools were used to determine literature trends and investigate research interests to provide a comprehensive knowledge on this research topic. 215 articles, published between 2009 and 2024, were obtained from the Scopus database, and their bibliometric data were statistically analyzed using the ‘bibliometrix’ package in R, to determine annual productivity, countries, authors, sources and citations. The co-authorship map and keywords co-occurrence analysis were obtained using VOSviewer and SCImago Graphica interfaces. Samples collection, methods, abundances, and polymers type differed significantly across research. Furthermore, keywords extraction revealed that only a minor fraction (4.6 %) of the total number of articles concerned drinking water sources and ecological risk assessment. This is a critical aspect of this field of research, as the contamination of drinking water sources could lead to the ingestion of microplastics, posing serious risk to biodiversity and human health. Furthermore, the absence of common legislation significantly affects the extent of this contamination. Monitoring studies of MP pollution in groundwater are necessary to develop targeted mitigation strategies to preserve human and environmental health. Finally, the lack of standardized protocols for sampling and analysis methods is a pressing need to encourage further studies on MPs in groundwater and to enable comparison of studies.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101375"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shallow groundwater potential mapping and evaluation for climate resilient smallholder irrigation in the Zeway-Shalla Sub-basin, Ethiopia 埃塞俄比亚 Zeway-Shalla 小流域浅层地下水潜力测绘与评估,促进具有气候复原力的小农灌溉
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-11-01 DOI: 10.1016/j.gsd.2024.101367
Taye Alemayehu Hulluka , Girma Yimer Ebrahim , Alemseged Tamiru Haile , Amare Haileslassie
{"title":"Shallow groundwater potential mapping and evaluation for climate resilient smallholder irrigation in the Zeway-Shalla Sub-basin, Ethiopia","authors":"Taye Alemayehu Hulluka ,&nbsp;Girma Yimer Ebrahim ,&nbsp;Alemseged Tamiru Haile ,&nbsp;Amare Haileslassie","doi":"10.1016/j.gsd.2024.101367","DOIUrl":"10.1016/j.gsd.2024.101367","url":null,"abstract":"","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101367"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical analysis of enhanced microbial bioremediation strategies of PAHs contaminated sites: Toxicity and techno-economic analysis 多环芳烃污染场地强化微生物生物修复战略的关键分析:毒性和技术经济分析
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-11-01 DOI: 10.1016/j.gsd.2024.101369
Y.P. Ragini , Jeyanthi Palanivelu , R.V. Hemavathy
{"title":"Critical analysis of enhanced microbial bioremediation strategies of PAHs contaminated sites: Toxicity and techno-economic analysis","authors":"Y.P. Ragini ,&nbsp;Jeyanthi Palanivelu ,&nbsp;R.V. Hemavathy","doi":"10.1016/j.gsd.2024.101369","DOIUrl":"10.1016/j.gsd.2024.101369","url":null,"abstract":"<div><div>Polycyclic aromatic hydrocarbons (PAHs) pose significant threats to environmental integrity and public health due to their high toxicity, persistence, and potential for bioaccumulation. In contaminated soils, PAH concentrations typically range from 1 to 100 mg/kg, with severely polluted areas reaching up to 1000 mg/kg. Conventional bioremediation techniques, limited to 30–50% efficiency, underscore the need for more effective solutions. This review highlights recent advancements in microbial bioremediation strategies, demonstrating removal efficiencies of 80–90% through the utilization of functional microorganisms, which metabolize PAHs into non-toxic compounds. Innovative techniques such as genetic engineering, microbial immobilization, and nanotechnology are shown to achieve over 90% pollutant removal. The review discusses key metabolic pathways and enzymatic processes driving PAH degradation, such as ring-hydroxylation and oxygenation. Techno-economic assessments indicate up to 40% cost savings and improved energy efficiency compared to conventional methods, facilitating scalability for large-scale environmental restoration projects. Microbial solutions for groundwater pollution, where PAH levels often exceed the maximum contaminant level (MCL) of 0.2 μg/L, are found to be highly effective in mitigating ecological risks and protecting public health. This comprehensive analysis highlights the promising role of advanced microbial bioremediation techniques in addressing PAH contamination across diverse ecosystems, including soils, sediments, and aquatic environments.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101369"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geothermal aided advanced desalination of highly saline water: From technology development to seasonal impact optimization 地热辅助先进的高盐度海水淡化技术:从技术开发到季节性影响优化
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-11-01 DOI: 10.1016/j.gsd.2024.101379
Dipti Chaudhary , Anirbid Sircar , Roshni Kumari , Namrata Bist , Kriti Yadav , Kelvy P. Dalsania
{"title":"Geothermal aided advanced desalination of highly saline water: From technology development to seasonal impact optimization","authors":"Dipti Chaudhary ,&nbsp;Anirbid Sircar ,&nbsp;Roshni Kumari ,&nbsp;Namrata Bist ,&nbsp;Kriti Yadav ,&nbsp;Kelvy P. Dalsania","doi":"10.1016/j.gsd.2024.101379","DOIUrl":"10.1016/j.gsd.2024.101379","url":null,"abstract":"<div><div>Access to clean drinking water is a critical global imperative, particularly in regions facing water scarcity. The present study aims to explore a sustainable approach for enhancing water quality by desalinating geothermal water which is extracted from a geothermal hotspot at Dholera, Gujarat. Since there is a shortage of clean and potable water in the area, it is advisable to use this renewable resource for drinking and irrigation purpose after treatment through a suitable method powered by organic rankine cycle (ORC) which not only serves the aim of sustainable approach but also has minimum environmental impact. The investigation illustrates fabrication and demonstration of geothermal-aided desalination unit and its plant set up at the study area for qualitative desalination of highly saline water. The system's performance is evaluated for seasonal variations in geothermal water, both before and after desalination. Results shows a significant reduction in contaminants, with decrease in salinity by 95.30% and total dissolved solids (TDS) by 96.91%. The novelty of this approach lies in salt extraction from the by-product of rejected water, contributing to resource recovery. This approach demonstrates an environmentally friendly and sustainable solution to address water scarcity in the region which is aligned with sustainable development goals (SDGs). The process's effectiveness for implementation is suggested by the strong p-values (all &lt;0.001). Additionally, the Cohen's d values, which are noticeably high across all parameters, indicate strong effect sizes ensuring desalination's viability for practical uses such as irrigation and safe drinking.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101379"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating dominant factors of coliform contamination in shallow groundwater: A logistic regression and AHP approach 调查浅层地下水大肠菌群污染的主要因素:逻辑回归和 AHP 方法
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-11-01 DOI: 10.1016/j.gsd.2024.101384
Enda Kalyana Putri , Suprihanto Notodarmojo , Rosetyati Retno Utami
{"title":"Investigating dominant factors of coliform contamination in shallow groundwater: A logistic regression and AHP approach","authors":"Enda Kalyana Putri ,&nbsp;Suprihanto Notodarmojo ,&nbsp;Rosetyati Retno Utami","doi":"10.1016/j.gsd.2024.101384","DOIUrl":"10.1016/j.gsd.2024.101384","url":null,"abstract":"<div><div>Shallow groundwater is a crucial source of clean water in developing countries like Indonesia. However, population growth has led to declining water quality due to inadequate infrastructure. This study aimed to identify dominant factors contributing to coliform contamination in shallow groundwater, addressing the lack of detailed statistical and multicriteria analyses in previous large-scale studies. The study was conducted in a densely populated urban area in Yogyakarta, Indonesia, and total coliform measurements from 42 groundwater samples were used as the independent variable. There are 14 dependent variables, categorized into three aspects: infrastructure (e.g., well type, well depth, wall of well, DEWATS type, well distance to the septic tank, latrine, and other contaminant sources); specific (e.g., population density and land use); and intrinsic (e.g., groundwater level, rainfall, soil type, and slope). Those parameters were statistically analyzed using logistic regression with IBM SPSS 26 software, and supported by the Analytical Hierarchy Process (AHP) that was employed using Expert Choice software to prioritize the factors. The results showed that 83.3% of the shallow groundwater samples exceeded the acceptable limits for total coliform, with key factors including well's proximity to other contamination sources, slope, distance from septic tanks, groundwater level, and population density. These findings highlight the importance of considering complex environmental factors in managing groundwater quality, particularly in developing countries. It is recommended that local authorities implement stricter regulations and infrastructure improvements to mitigate contamination risks.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101384"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controversial insights into irrigation water quality in arid and semi-arid regions using AI driven predictions: Case of southern Gabès 利用人工智能预测对干旱和半干旱地区灌溉水质的争议性见解:加贝斯南部案例
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-11-01 DOI: 10.1016/j.gsd.2024.101381
Khyria Wederni , Boulbaba Haddaji , Younes Hamed , Salem Bouri , Nicolò Colombani
{"title":"Controversial insights into irrigation water quality in arid and semi-arid regions using AI driven predictions: Case of southern Gabès","authors":"Khyria Wederni ,&nbsp;Boulbaba Haddaji ,&nbsp;Younes Hamed ,&nbsp;Salem Bouri ,&nbsp;Nicolò Colombani","doi":"10.1016/j.gsd.2024.101381","DOIUrl":"10.1016/j.gsd.2024.101381","url":null,"abstract":"<div><div>Effective groundwater management is critical in arid and semi-arid regions, where water resources are essential for agriculture. This study assesses the Irrigation Water Quality Index (IWQI) of the Southern Gabès aquifer in Tunisia using a combination of traditional hydrochemical analysis and machine learning models—specifically, Classification and Regression Tree (CART) and Support Vector Machine (SVM). A total of 83 groundwater samples were analyzed based on five key parameters: Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR), Chloride (Cl-), Sodium (Na+), and Bicarbonate (HCO3-). The results show that the CART model demonstrated superior performance with an R<sup>2</sup> value of 0.99 and a Root Mean Square Error (RMSE) of 0.43, while the SVM model achieved an R<sup>2</sup> of 0.87. These findings underscore CART's robustness in predicting IWQI, offering high precision even with limited datasets.</div><div>The groundwater quality was categorized, revealing that 62% of samples were classified as \"satisfactory\" for irrigation, while 31% were deemed \"unsuitable\" without treatment, highlighting areas of concern for agricultural use. The study also emphasizes the importance of continuous monitoring and adaptive management strategies to ensure sustainable water use in the region.</div><div>Overall, this research demonstrates the effectiveness of machine learning models, particularly CART, in accurately assessing groundwater quality. These insights provide valuable tools for resource managers to make informed decisions, ensuring the sustainable exploitation of groundwater in arid and semi-arid regions. The findings pave the way for future research and policy development in water resource management.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101381"},"PeriodicalIF":4.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing anthropogenic and natural influences on water quality in a critical shallow groundwater system: Insights from the Metauro River basin (Central Italy) 评估人类活动和自然因素对重要浅层地下水系统水质的影响:梅陶罗河流域(意大利中部)的启示
IF 4.9
Groundwater for Sustainable Development Pub Date : 2024-10-19 DOI: 10.1016/j.gsd.2024.101361
Marco Taussi , Giovanni Vespasiano , Lorenzo Chemeri , Roberta Bonì , Barbara Nisi , Orlando Vaselli , Antonio Delgado-Huertas , Carmine Apollaro , Daniele Tardani , Daniele Farina , Alberto Renzulli
{"title":"Assessing anthropogenic and natural influences on water quality in a critical shallow groundwater system: Insights from the Metauro River basin (Central Italy)","authors":"Marco Taussi ,&nbsp;Giovanni Vespasiano ,&nbsp;Lorenzo Chemeri ,&nbsp;Roberta Bonì ,&nbsp;Barbara Nisi ,&nbsp;Orlando Vaselli ,&nbsp;Antonio Delgado-Huertas ,&nbsp;Carmine Apollaro ,&nbsp;Daniele Tardani ,&nbsp;Daniele Farina ,&nbsp;Alberto Renzulli","doi":"10.1016/j.gsd.2024.101361","DOIUrl":"10.1016/j.gsd.2024.101361","url":null,"abstract":"<div><div>This work aims at the hydro-geochemical and isotopic characterization of the water resource (surface water and shallow phreatic aquifer) of the Metauro River catchment (Marche, Central Italy). The waters of the Metauro River area represent a fundamental resource exploited daily for drinking, agricultural, and industrial uses. The anthropic pressure exposes the water resources to depletion and quality degradation risks, making the study area of high scientific and social interest. The hydro-geochemical approach revealed that the interaction between water and local lithologies led to Ca<sup>2+</sup>-HCO<sub>3</sub><sup>-</sup> compositions, with less frequent Na<sup>+</sup>(K<sup>+</sup>)-Cl<sup>-</sup> and Ca<sup>2+</sup>-Cl<sup>-</sup> hydrofacies and variable salinity (up to 55 meq/L). Most waters showed natural (e.g., halite and evaporite contribution) and anthropogenic (sewage, septic tanks, manure, urban wastewater, and industrial effluents contribution) inputs confirmed by both Na<sup>+</sup>, Cl<sup>−</sup>, NO<sub>3</sub><sup>−</sup>, and SO<sub>4</sub><sup>2−</sup> enrichments and high Cl/Br ratios. The anthropogenic contributions is further confirmed by the relatively high contents of TPTEs (Total Potentially Toxic Elements), even though these elements individually present values below the Italian Normative Legislative limit. Geochemical issues are mitigated during the year when the surface aquifer is recharged by the river, characterized by a better overall chemical quality. The occurrence of this relationship is of interest to the local authorities in charge of the water resource management. In fact, groundwater exploitation could be increased during specific periods, thus decreasing the anthropic pressure on the river waters, usually exploited for drinking purposes even during the summer seasons when the hydrometric levels drastically drop. The adopted multidisciplinary approach provides an effective tool for accurately determining groundwater processes and can be helpful in improving the balanced and sustainable management of water resources in coastal and non-coastal plains.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101361"},"PeriodicalIF":4.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信