{"title":"Implications of multi-decadal land use changes on groundwater regime in tropical coastal regions","authors":"Ananya Muduli, Pallavi Banerjee Chattopadhyay","doi":"10.1016/j.gsd.2025.101419","DOIUrl":"10.1016/j.gsd.2025.101419","url":null,"abstract":"<div><div>The present study investigates Odisha's coastal regions, analyzing Land Use and Land Cover (LULC) changes from 2009 to 2023 and their impact on land surface temperature (LST) and groundwater quality index (GWI) under increasing anthropogenic pressures. The findings revealed a 6.6% rise in built-up areas, a 25.6% increase in agricultural land, and a 4.2% decline in vegetation, with Kappa accuracies exceeding 80%. These changes corresponded to a 1.5 °C rise in mean LST. Hydrogeochemical analysis of 257 groundwater samples from Scenario 1 (2016–2017) and Scenario 2 (2022–2023) showed significant changes in water chemistry. Piper and Chadha diagrams indicated a transition from Na⁺-Cl⁻ to mixed Ca<sup>2</sup>⁺-Mg<sup>2</sup>⁺-Cl⁻ and Ca<sup>2+</sup>-Mg<sup>2</sup>⁺-HCO₃⁻ facies, reflecting a shift from saline to mixed water types and freshwater recharge. Despite this trend, scatter plots and molar ratios identified multiple contamination sources, particularly from anthropogenic activities. The GWI revealed that approximately 50% of the region falls into “poor” to “unsuitable” categories for drinking water, attributed to high levels of K⁺, Na⁺, and Cl⁻ in Scenario 1 and K⁺, HCO₃⁻, Na⁺, pH, and TH in Scenario 2, supported by ANOVA analysis. The increasing strong correlation between K<sup>+</sup> and GWI further confirms the rise in agricultural activity. Gibbs diagram highlights rock-water interaction as the primary factor, with evaporation as secondary. The Ca<sup>2</sup>⁺ vs. SO₄<sup>2</sup>⁻ scatter plot highlighted carbonate weathering, contributing to increased groundwater hardness. TDS vs. TH correlation (>0.77) indicated worsening groundwater quality, with more samples transitioning to \"very hard\" and \"brackish\" categories. In contrast, strong correlations between TDS and Na⁺, Cl⁻ (>0.8) further confirmed increased salinity. Principal Component Analysis (PCA) revealed positive GWI and negative LULC loadings, linking urbanization and agricultural expansion to groundwater quality degradation. This study proposes sustainable water management (SDGs) strategies to fulfill SDGs 3, 6, and 11 enhancing coastal water resilience and public health.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101419"},"PeriodicalIF":4.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed I.A. Ibrahim , Mohamed A. El-Sawy , Ahmed R. Elgendy , Hossam M. El-Sayed , Laila A. Mohamed , Mohamed A. Aly-Eldeen
{"title":"Assessing seawater intrusion impact on groundwater quality in El-Omayed aquifers, Mediterranean coast, Egypt using hydrogeochemical and chemometric analyses","authors":"Mohammed I.A. Ibrahim , Mohamed A. El-Sawy , Ahmed R. Elgendy , Hossam M. El-Sayed , Laila A. Mohamed , Mohamed A. Aly-Eldeen","doi":"10.1016/j.gsd.2025.101418","DOIUrl":"10.1016/j.gsd.2025.101418","url":null,"abstract":"<div><div>Groundwater, a vital freshwater source, faces threats from natural and human-induced factors, particularly seawater salinization in coastal aquifers. This study assesses the impacts of seawater intrusion and heavy metals (HMs) on groundwater quality (11 aquifers and 2 drains) in Egypt's El-Omayed area along the Mediterranean coast. Several parameters were measured including pH, electrical conductivity (EC), total dissolved solids (TDS), major ions, and seven HMs. Seawater intrusion, geochemical mechanisms, and hydrochemical faces of water, were evaluated by ion deviations (<span><math><mrow><msub><mi>D</mi><mi>j</mi></msub></mrow></math></span>), Piper, Gibbs and Chadha plots, and various ionic ratios. The water quality indices (WQI, EWQI, and impWQI), and heavy metal pollution index were employed to assess water suitability for drinking, while EC, total hardness (TH), sodium absorption ratio (SAR), permeability index (PI), etc., were used to evaluate water suitability for irrigation. The results indicated that Na–Cl hydrochemical facies were predominant, suggesting significant salinization, and the ion-exchange mechanisms (dissolution-evaporation) influenced by seawater intrusion regulate the groundwater geochemistry. Seawater fractions (<span><math><mrow><msub><mi>f</mi><mrow><mi>S</mi><mi>e</mi><mi>a</mi></mrow></msub></mrow></math></span>%) ranging from 0.012% to 20.89%, along with the positive mixing ratios (<span><math><mrow><mo>Δ</mo><msub><mi>m</mi><mi>i</mi></msub></mrow></math></span>) of <span><math><mrow><msup><mrow><mi>N</mi><mi>a</mi></mrow><mo>+</mo></msup></mrow></math></span> and <span><math><mrow><msup><mi>K</mi><mo>+</mo></msup></mrow></math></span> in all stations, indicates significant ion addition due to seawater intrusion. Although HM concentrations (Fe > Zn > Ni > Cu > Pb > Mn > Cd) within the WHO permissible levels for drinking, the high EC and TDS values suggest substantial saltwater intrusion. WQI, EWQI, and impWQI ranged from 86.53 to 1203.04, 89.14 to 1091.02, and 93.81 to 813.70, respectively, categorizing ∼60% of stations as “very poor,” 1–15% as “poor,” 15–23% as “moderate,” and 1% as “good”. According to FAO, about 38% of stations exhibit moderate hardness (75 < EC < 150), while 69% are permissible for irrigation (EC < 3000). The majority of samples are unsuitable with SAR>12; however, the PI% suggests suitability with PI > 75. Overall, most groundwater in the El-Omayed area is unsuitable for drinking and irrigation without pre-treatment, highlighting the urgent need for effective management and remediation to mitigate seawater intrusion and enhance water quality.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101418"},"PeriodicalIF":4.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharon Ntube Ngwese , Hassina Mouri , Richard Ayuk II. Akoachere , Jennifer McKinley , Carla Candeias
{"title":"Assessment of potentially harmful elements in surface and groundwater from the granito-gneissic aquiferous formations in Bertoua city and environs, East Region, Cameroon, Central Africa: Effects on human health","authors":"Sharon Ntube Ngwese , Hassina Mouri , Richard Ayuk II. Akoachere , Jennifer McKinley , Carla Candeias","doi":"10.1016/j.gsd.2025.101420","DOIUrl":"10.1016/j.gsd.2025.101420","url":null,"abstract":"<div><div>This study of Bertoua city and its environs, in the East Region of Cameroon (4.46–4.6° N, 13.64–13.8° E) was to assess potentially harmful elements in surface and groundwater sources and their potential health risks, aligning with the Sustainable Development Goals (SDGs), particularly SDG 3, ensuring good health and SDG 6, ensuring clean water and sanitation. Thirty water samples were analysed for the presence of major ions: Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, SO<sub>4</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, N0<sub>3</sub><sup>-</sup>, and Cl<sup>−</sup> using ion chromatography (IC) during both the wet and dry seasons, and PHEs including Al, Si, Se, Fe, Cr, Co, and Cu using inductive coupled plasma mass spectrometry (ICP-MS) during the dry season. Results indicated high NO<sub>3</sub><sup>−</sup> and Al above the permissible limits set by the World Health Organization. In groundwater, NO<sub>3</sub><sup>−</sup> concentrations ranged from 0 to 643.5 mg/L in the wet season and 0–705.4 mg/L in the dry season, while Al concentrations ranged from 0.02 to 1.79 mg/L: both above the World Health Organization limit. In surface water, NO<sub>3</sub><sup>−</sup> concentrations ranged from 152.71 to 188 mg/L in the wet season and 143.3–166.5 mg/L in the dry season, while Al concentrations ranged from 0.004 to 0.12 mg/L both above the same drinking water standard. The water types were Na<sup>+</sup>-K<sup>+</sup>-SO<sub>4</sub><sup>2-</sup>, Ca<sup>2+</sup>-HCO<sub>3</sub><sup>-</sup>, Ca<sup>2+</sup>-SO<sub>4</sub><sup>2-</sup> and Ca<sup>2+</sup>-Cl<sup>-</sup>, with simple dissolution and ion exchange responsible for them. Rock weathering was the dominant hydrogeochemical process controlling groundwater chemistry with minimal influence from atmospheric precipitation. Contamination inputs were from anthropogenic and geogenic sources. Calculated HQ<sub>oral</sub> for males, females and children were greater than one (HQ<sub>oral</sub> > 1) for NO<sub>3</sub><sup>−</sup>, Al, Se, and Fe with children having higher values compared to the other demographic age groups due to a larger body-size-to-volume ratio. The HQ<sub>dermal</sub> values were low and below the safe limit of 1 for all demographic groups, indicating no health risks to the population from dermal exposure.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101420"},"PeriodicalIF":4.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seasonal variability of arsenic concentrations in irrigation water and its impact on arsenic accumulation in agriculture soils: A study from Bengal Delta","authors":"Sandip Kumar Mohakud, Syed Hilal Farooq","doi":"10.1016/j.gsd.2025.101415","DOIUrl":"10.1016/j.gsd.2025.101415","url":null,"abstract":"<div><div>Arsenic (As) is a highly toxic geogenic contaminant present in groundwater globally. The Bengal Delta (jointly Bangladesh and West Bengal, India) is considered as one of the worst As affected areas. The present study investigates (i) the extent of As contamination in the irrigation wells, (ii) its seasonal variability, and (iii) understanding the As accumulation in agriculture soils in the Bengal Delta. For this purpose, 68 irrigation wells (34 shallow and 34 deep) were sampled during pre-monsoon, monsoon and post-monsoon seasons, and thus, a total of 204 water samples were collected. Additionally, top-soil samples (15 cm) and paddy plant (grain, leaf and stem) samples were collected from 6 paddy-cultivating agricultural fields and analysed for As concentrations. The samples were analysed for various physicochemical parameters, major ions and trace elements, including As and iron. Two-way ANOVA test suggests that significant variation in As concentration only across seasons and the As concentration ranges from <1 μg/L to 197 μg/L. This highlights the role of seasonal redox conditions in mobilizing As from sediments into the groundwater. In the Piper plot, both the deep and shallow groundwater falls in Ca-HCO<sub>3</sub> type and do not show any significant seasonal variation in hydrochemical facies. Further, silicate and carbonate weathering have been identified as major contributors to groundwater solute composition.</div><div>The As concentrations in the irrigation water and in different parts of the paddy plant were utilized for As budgeting in the agricultural soils for the last 50 years. The calculated (21.48 mg/kg) As values in soils closely align with the measured values (21.29 mg/kg) indicating a gradual build-up of As in the agricultural system through irrigation water over the last 50 years.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101415"},"PeriodicalIF":4.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of drivers contributing to unsustainable groundwater consumption in Pakistan","authors":"Faizan ul Hasan , Bareerah Fatima","doi":"10.1016/j.gsd.2025.101414","DOIUrl":"10.1016/j.gsd.2025.101414","url":null,"abstract":"<div><div>Groundwater depletion in Pakistan, particularly in the Indus Basin, poses a severe threat to agricultural sustainability, water security, and economic stability. Over the past few decades, groundwater extraction has surged dramatically, with the number of tube wells increasing by 1500% from 1975 to 2021, reaching 1.4 million. Currently, groundwater supplies 60% of irrigation water, 90% of domestic water, and 100% of industrial water. However, this extensive reliance has resulted in significant water table declines, especially in canal command areas and urban centers. This study synthesizes insights from scientific literature, policy documents, and technical reports to examine the key drivers contributing to unsustainable groundwater consumption in Pakistan. Weak governance structures, inadequate regulatory mechanisms, and increasing agricultural water demand—where five major crops (rice, wheat, cotton, sugarcane, and maize) consume 85% of total water resources while contributing less than 5% to GDP—have led to unchecked groundwater exploitation. The historic 80.3 billion cubic meters (BCM) of annual recharge in the upper Indus plain is now outpaced by extraction, exacerbating the crisis. Climate variability, including a 19% reduction in surface water irrigation area from 2003 to 2021, has further increased reliance on groundwater. Despite some recent policy efforts, such as the Punjab Water Act (2019) and KP Water Act (2020), enforcement remains weak due to institutional constraints and political barriers. There is an urgent need for adaptive groundwater governance, integrating scientific knowledge, regulatory mechanisms, and technological innovations. A transition from an open-access regime to a regulated system, supported by robust monitoring and data-sharing mechanisms, is critical for long-term sustainability. This review highlights urgent policy gaps and provides recommendations to strengthen groundwater governance in Pakistan and other regions facing similar challenges.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101414"},"PeriodicalIF":4.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iman Salehi Hikouei , Keith N. Eshleman , Bambang Hero Saharjo , Laura L.B. Graham , Grahame Applegate , Mark A. Cochrane
{"title":"Machine-learning based spatiotemporal performance analysis of degraded tropical peatland groundwater level numerical model","authors":"Iman Salehi Hikouei , Keith N. Eshleman , Bambang Hero Saharjo , Laura L.B. Graham , Grahame Applegate , Mark A. Cochrane","doi":"10.1016/j.gsd.2025.101413","DOIUrl":"10.1016/j.gsd.2025.101413","url":null,"abstract":"<div><div>In this study, we used a numerical model, MODFLOW, to simulate groundwater level fluctuations and estimate saturated hydraulic conductivity (Ks) of peat structure in a degraded environment in Central Kalimantan, Indonesia. The model was calibrated and validated using groundwater level data manually collected at 265 dipwells on a monthly basis from 2011 to 2019; the parameterized model produced Nash–Sutcliffe Efficiency coefficients of 0.97 and 0.95 for calibration and validation, respectively. We also employed machine learning algorithms to investigate sources of spatiotemporal errors produced by the calibrated model. Extreme gradient boosting (XGBoost) algorithm with R<sup>2</sup> of 0.99 and RMSE of 0.05m outperformed random forest (RF) algorithm in predicting actual residuals. Model performance for estimating groundwater levels (GWLs) was most sensitive to precipitation, highlighting satellite precipitation data as a potential source of uncertainty. Results also showed that high spatiotemporal variation in saturated hydraulic conductivity exists across study site but that use of pilot points, which assign variable Ks values to model cells, can capture much of this variability and increase model accuracy, Nash–Sutcliffe Efficiency coefficient of 0.98.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101413"},"PeriodicalIF":4.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel E. Martínez , Orlando M. Quiroz-Londoño , Alejandro D. Basaldua , Melisa Glok-Galli , Ximena Solana , Emiliano F. Alcaraz , Leandro Bertolin
{"title":"The groundwater age of the Argentine aquifers: A review and paleoclimate insight","authors":"Daniel E. Martínez , Orlando M. Quiroz-Londoño , Alejandro D. Basaldua , Melisa Glok-Galli , Ximena Solana , Emiliano F. Alcaraz , Leandro Bertolin","doi":"10.1016/j.gsd.2024.101402","DOIUrl":"10.1016/j.gsd.2024.101402","url":null,"abstract":"<div><div>Argentina is a large country in South America, spans from the tropical latitude S 26°15′ to the subpolar latitude S 53°38’, and longitudinally from the Atlantic coast to the Andes range in the West. Such extensive geographical coverage includes diverse climatic and geological conditions, fostering a multitude of aquifers with varying hydrogeological attributes. Groundwater dating is an underdeveloped discipline in Argentina, but several studies have been conducted. These studies are delineated across various aquifer typologies, namely: 1) Sedimentary aquifers in Eastern Patagonia, 2) Alluvial aquifers in the middle Andes area; 3) Shallow aquifers in the Pampa region; 4) Confined intermediate aquifers in the Pampa region; 5) Fractured aquifer in crystalline rocks; 6) the confined sandstones of the Guaraní aquifer; 7) Deep confined aquifers in the Pampa region.</div><div>Most of the studies are based in the classical tracers, <sup>3</sup>H and <sup>14</sup>C, with only a few employing other traces such as CFCs, <sup>4</sup>He and <sup>81</sup>Kr. In almost all the studies only an apparent age (piston flow model) is provided. Only two papers include the analysis of the residence time distribution. Considering the apparent ages, groundwater ranges from young in shallow unconfined aquifers, or fractured aquifers in crystalline rocks, to very old groundwater with an age of 1.2 Ma in the deep thermal aquifers. Groundwater which radiocarbon age corresponds to the Upper Pleistocene period, exhibits a depleted isotopic composition that correlates with colder temperatures in a sequence of glacial periods.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"28 ","pages":"Article 101402"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143132985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitigating nitrate contamination in groundwater: A comprehensive review of in-situ approaches","authors":"Preetismita Borah , Gongutri Borah , Arindam Malakar","doi":"10.1016/j.gsd.2025.101406","DOIUrl":"10.1016/j.gsd.2025.101406","url":null,"abstract":"<div><div>Groundwater nitrate contamination remains a critical global environmental and public health challenge, driven primarily by agricultural activities, industrial discharges, and urbanization. This review paper comprehensively analyze in-situ approaches for mitigating nitrate contamination, including bioremediation, permeable reactive barriers, and advanced catalytic techniques. It highlights the evolution of these methods, focusing on their effectiveness, scalability, and sustainability. While significant advancements have been made, critical gaps persist in addressing long-term efficiency, cost-effectiveness, and adaptability to diverse hydrogeological settings. Emerging trends, such as the application of bioengineered microorganisms, nanomaterials, and data-driven optimization strategies, are explored for their potential to overcome these challenges. The paper also emphasizes the influence of regulatory frameworks, climate change, and technological innovation on developing sustainable nitrate mitigation strategies. Future research should integrate multidisciplinary approaches to develop robust, site-specific solutions, using advanced monitoring technologies for real-time contaminant tracking and refining eco-friendly materials for enhanced reactivity and durability. This review aims to provide a roadmap for advancing the design and implementation of innovative, in-situ nitrate mitigation techniques by synthesizing current knowledge and identifying future priorities.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"28 ","pages":"Article 101406"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143132987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dario Cauich-Kau , Javier Castro-Larragoitia , Antonio Cardona Benavides , María E. García-Arreola , Gonzalo G. García-Vargas
{"title":"An adapted groundwater quality index including toxicological critical pollutants","authors":"Dario Cauich-Kau , Javier Castro-Larragoitia , Antonio Cardona Benavides , María E. García-Arreola , Gonzalo G. García-Vargas","doi":"10.1016/j.gsd.2024.101401","DOIUrl":"10.1016/j.gsd.2024.101401","url":null,"abstract":"<div><div>Water supply for population is mainly supported by groundwater. Its quality for drinking purposes is a worldwide major issue. Groundwater quality indexes are tools to assess its appropriateness for human consumption. This study evaluates the WAWQI index in North-Central Mexico with reported toxicological critical pollutants (arsenic, fluoride, and uranium) and put forward an adapted and optimized Groundwater Quality Index (GWQI). The research utilizes a dataset of groundwater parameters to analyze the chemical composition and suitability of groundwater (<em>n</em> = 121 samples) for drinking purposes. Arsenic concentrations fluctuate between 7.78 and 9798, average of 154 μg/L and only three samples within the Mexican guideline. Fluoride concentrations range from 0.01 to 2.2, average of 0.8 mg/L and 64% of the sample within the Mexican guideline. Uranium, not previously described in the region, show elevated concentrations in the range of 1.01–93.7 average of 11.4 μg/L and 88% within the WHO guideline. The WAWQI Index, applied to water samples, categorized samples as excellent and good status. However, 95%, 33%, and 11% of the samples are above As, F<sup>-</sup>, and U guidelines; therefore, a tailored GWQI for drinking water was proposed and optimized considering the WAWQI limitations. The outcome of the GWQI shows that only two samples classified with excellent status and are safe to drink without treatment. However, 119 samples were classified as poor, very poor, and unsuitable for drinking purposes. The GWQI provides a valuable tool for assessing groundwater quality in regions with similar hydrogeological conditions to the study area, and to identify areas requiring urgent attention to ensure safe drinking water supply. The study highlights the urgent need for sustainable water management practices to address the region's water quality challenges and ensure the long-term well-being of its population and fulfill the Sustainable Development Goal 6.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"28 ","pages":"Article 101401"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcio Roberto Schneider , Ana Claudia Canalli Bortolassi , Adriana Ururahy Soriano , Marcus Paulus Martins Baessa , Luiz Fernando Martins , Rodrigo de Almeida Heringer , Admir José Giachini
{"title":"Enhancing bioremediation of diesel/biodiesel blend (B20) impacted sites using in situ bioreactors: A nature-based solution for sustainable groundwater management","authors":"Marcio Roberto Schneider , Ana Claudia Canalli Bortolassi , Adriana Ururahy Soriano , Marcus Paulus Martins Baessa , Luiz Fernando Martins , Rodrigo de Almeida Heringer , Admir José Giachini","doi":"10.1016/j.gsd.2024.101387","DOIUrl":"10.1016/j.gsd.2024.101387","url":null,"abstract":"<div><div>The rise of biodiesel content in diesel/biodiesel blends as a viable alternative to traditional diesel fuel presents several advantages, particularly in terms of reduced emissions of pollutants like carbon monoxide (CO), hydrocarbons (HC), and smoke. However, the increased production and utilization of biodiesel raise concerns about potential environmental impacts, such as groundwater pollution. This has led to a growing need for sustainable and effective bioremediation techniques to address these issues and ensure the safe closure of contaminated sites in accordance with environmental regulatory criteria. Two experimental areas contaminated with B20 (80% diesel and 20% biodiesel v/v) to evaluate ammonium acetate biostimulation (B20_BAA) and natural source zone depletion (B20_NSZD) as remediation strategies were monitored for 10 and 12 years, respectively. Although the benzene half-life was 1.49 and 4.08 years, respectively, hydrocarbon concentrations remained above the maximum contaminant level (MCL) allowed in Brazil for groundwater, requiring additional technologies for site cleanup. Then, two pilot-scale airlift bioreactors were employed as nature-based solutions (NbS) to reduce the concentration of persistent contaminants for site closure. Indeed, concentrations of benzene and 2-methylnaphthalene decreased significantly after the bioreactors began operation, reaching values below their respective MCL. 16S rRNA gene sequencing showed a beneficial response of microbial communities composed of <em>Massilia</em>, <em>Burkholderia-Caballeronia-Paraburkholderia</em>, <em>Mycobacterium</em> and <em>Bacillus</em> genus involved in hydrocarbons aerobic biodegradation. Moreover, predicted functional genes analysis demonstrated that the relative abundances of key aerobic degradation pathways for benzene and 2-methylnaphthalene increased, supporting the hypothesis that the NbS stimulated the hydrocarbons biodegradation. These findings demonstrated that combining different nature-based solutions (NbS) can effectively remediate petroleum hydrocarbons in contaminated groundwater through geochemical characteristics and exploration of indigenous microorganisms. To the best of the authors’ knowledge, this is the first study to employ bioreactors to treat B20-contaminated groundwater at a field scale.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"28 ","pages":"Article 101387"},"PeriodicalIF":4.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143133047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}