{"title":"Dielectric behavior of manganese doped aluminum iron oxide and possibility of use in magnetoelectric sensing and dielectric heating devices for medical related research","authors":"M.Z. Ahsan , Tanzina Tabassum","doi":"10.1016/j.revip.2025.100101","DOIUrl":"10.1016/j.revip.2025.100101","url":null,"abstract":"<div><div>This paper reports on the dielectric properties of undoped and manganese doped aluminum iron oxide. The solid state reaction method was used to synthesis the samples. The dieletic function was measured over the frequency band 1kHz–10 MHz at room temperature. The real part of dielectric function shows the material in ferrimagnetic/ferromagnetic order. The negative value of imaginary part of dielectric function near Fabry–Perot resonance is found to be correlated with the magnetoelectric coupling. This magnetoelectric couping effect produces a transformation between magnetic energy and electric energy. The dispersion of imaginary part of electric modulus shows two relaxation time constant for undoped aluminum iron oxide and one relaxation time constant for manganese doped aluminum iron oxide. This effect of managanese doping and transformation of electric and magnetic energy near the Fabry–Perot resonance in aluminum iron oxide may be proclaimed as the novelty of this study.</div></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"13 ","pages":"Article 100101"},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143141151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. lshahrani , A.H. Korna , S. Fares , Montasir Salman
{"title":"Impact of gamma irradiation on the structural, morphological, and optical properties of PLA/MnFe2O3/ZnO nanocomposites","authors":"B. lshahrani , A.H. Korna , S. Fares , Montasir Salman","doi":"10.1016/j.revip.2024.100098","DOIUrl":"10.1016/j.revip.2024.100098","url":null,"abstract":"<div><div>This study investigates the impact of gamma irradiation on the structural, morphological, and optical properties of PLA/MnFe₂O₃/ZnO nanocomposite films. Nanocomposites were fabricated using a sol-gel method and exposed to varying gamma radiation doses. Characterization techniques, including XRD, EDX, FTIR, EPR, UV–Vis spectroscopy, and EELS, were employed to elucidate the effects of irradiation. Gamma irradiation induced significant structural modifications, such as a reduction in crystallite size (from 15 nm to 8 nm at 150 kGy) and lattice strain. The PLA matrix underwent chain scission and crosslinking, altering the material's properties. The optical bandgap narrowed from 3.2 eV to 2.8 eV at 100 kGy, leading to increased light absorption and changes in refractive index and extinction coefficient. The tunable light response, evidenced by changes in optical conductivity and electron energy loss, offers potential applications in optoelectronic devices. Gamma irradiation emerges as a versatile tool for tailoring the properties of PLA/MnFe₂O₃/ZnO nanocomposite films. The findings pave the way for the development of novel nanocomposite-based materials with tailored optical, electronic, and magnetic properties.</div></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"13 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143141192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Second-order nonlocal shifts of scattered wave-packets: What can be measured by Goos–Hänchen and Imbert–Fedorov effects?","authors":"Klaus Morawetz","doi":"10.1016/j.revip.2024.100097","DOIUrl":"10.1016/j.revip.2024.100097","url":null,"abstract":"<div><div>The scattering of wavepackets with arbitrary energy dispersion on surfaces has been analyzed. Expanding up to second order in scattering shifts, it is found that besides the known Goos–Hänchen or Imbert–Fedorov spatial offset, as well as the Wigner delay time, new momentum and frequency shifts appear. Furthermore, the width of the scattered wave packet becomes modified as well, which can lead to a shrinking of pulses by multiple scattering. For a model of dielectric material characterized by a longitudinal and transverse dielectric function the shifts are calculated analytically. From the Goos–Hänchen and Imbert–Fedorov shifts one can access the longitudinal and transversal dielectric function. Perfectly aligned crystal symmetry axes with respect to scattering beam shows no Imbert–Fedorov effect. It is found that the Goos–Hänchen and Imbert–Fedorov effect are absent for homogeneous materials. Oppositely it is found that the Wigner delay time and the shrinking of the temporal pulse width allows to access the dielectric function independent on the beam geometry.</div></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"13 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasmon-enhanced downshifting and downconversion: Fundamentals and applications in photovoltaics","authors":"Aditi Joshi , Ilia L. Rasskazov","doi":"10.1016/j.revip.2024.100096","DOIUrl":"10.1016/j.revip.2024.100096","url":null,"abstract":"<div><div>Downshifting (DS) and downconversion (DC) are processes in which a high-energy photon is converted into one or several lower-energy photons, respectively. These processes have potential applications in imaging, solar energy harvesting, color conversion, and other fields. The quantum efficiency of DS and DC can be high, even surpassing 100%. However, efficient photon management is crucial for most applications, and improving the yield of DS and DC is highly desirable. One promising and relatively easy way to boost the yield of DS and DC is to utilize plasmonic nanoparticles. The resonant electric field enhancement near plasmonic nanoparticles leads to an increased excitation rate of DS and DC. However, the presence of metallic nanoparticles quenches the emission at both micro and macro scales due to Ohmic losses. Properly balancing enhancement and quenching by choosing the optimal shape, material, size, and concentration of plasmonic nanoparticles has been shown to boost DS and DC by a factor as large as <span><math><mrow><mn>50</mn><mo>×</mo></mrow></math></span>. In this review, we discuss the basics of plasmon-enhanced DS and DC and highlight recent progress in this field, covering experimental demonstrations of this concept and its implications for photovoltaics.</div></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"12 ","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Localization in quantum field theory","authors":"Riccardo Falcone, Claudio Conti","doi":"10.1016/j.revip.2024.100095","DOIUrl":"10.1016/j.revip.2024.100095","url":null,"abstract":"<div><p>We review the issue of localization in quantum field theory and detail the nonrelativistic limit. Three distinct localization schemes are examined: the Newton–Wigner, the algebraic quantum field theory, and the modal scheme. Among these, the algebraic quantum field theory provides a fundamental concept of localization, rooted in its axiomatic formulation. In contrast, the Newton–Wigner scheme draws inspiration from the Born interpretation, applying mainly to the nonrelativistic regime. The modal scheme, relying on the representation of single particles as positive frequency modes of the Klein–Gordon equation, is found to be incompatible with the algebraic quantum field theory localization.</p><p>This review delves into the distinctive features of each scheme, offering a comparative analysis. A specific focus is placed on the property of independence between state preparations and observable measurements in spacelike separated regions. Notably, the notion of localization in algebraic quantum field theory violates this independence due to the Reeh–Schlieder theorem. Drawing parallels with the quantum teleportation protocol, it is argued that causality remains unviolated. Additionally, we consider the nonrelativistic limit of quantum field theory, revealing the emergence of the Born scheme as the fundamental concept of localization. Consequently, the nonlocality associated with the Reeh–Schlieder theorem is shown to be suppressed under nonrelativistic conditions.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"12 ","pages":"Article 100095"},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405428324000054/pdfft?md5=c44e715fa03155c4f10421cbd7482af6&pid=1-s2.0-S2405428324000054-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep generative models for detector signature simulation: A taxonomic review","authors":"Baran Hashemi , Claudius Krause","doi":"10.1016/j.revip.2024.100092","DOIUrl":"https://doi.org/10.1016/j.revip.2024.100092","url":null,"abstract":"<div><p>In modern collider experiments, the quest to explore fundamental interactions between elementary particles has reached unparalleled levels of precision. Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions (the final state particles of hard scattering interactions). The complete simulation of them in a detector is a computational and storage-intensive task. To address this computational bottleneck in particle physics, alternative approaches have been developed, introducing additional assumptions and trade off accuracy for speed. The field has seen a surge in interest in surrogate modeling the detector simulation, fueled by the advancements in deep generative models. These models aim to generate responses that are statistically identical to the observed data. In this paper, we conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures from both methodological and application-wise perspectives. Initially, we formulate the problem of detector signature simulation and discuss its different variations that can be unified. Next, we classify the state-of-the-art methods into five distinct categories based on their underlying model architectures, summarizing their respective generation strategies. Finally, we shed light on the challenges and opportunities that lie ahead in detector signature simulation, setting the stage for future research and development.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"12 ","pages":"Article 100092"},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405428324000029/pdfft?md5=6f2aa7f4ae23560a19b65240d46827f9&pid=1-s2.0-S2405428324000029-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetism on frustrated magnet system of Nd2B2O7 (B = Ru, Ir, Hf, Pb, Mo, and Zr): A systematic literature review","authors":"Muhammad Abdan Syakuur , Utami Widyaiswari , Isao Watanabe , Risdiana Risdiana","doi":"10.1016/j.revip.2024.100094","DOIUrl":"https://doi.org/10.1016/j.revip.2024.100094","url":null,"abstract":"<div><p>Pyrochlore oxide, <em>A</em><sub>2</sub><em>B</em><sub>2</sub>O<sub>7</sub>, is known as a strongly correlated system with magnetic frustration caused by spins forming a network of corner-sharing tetrahedrons. A systematic literature review has been carried out for the pyrochlore oxide material <em>A</em><sub>2</sub><em>B</em><sub>2</sub>O<sub>7</sub>, with A = Nd, and B = Ru, Ir, Hf, Pb, Mo, and Zr. One of the materials receiving attention from some researchers is the system with <em>A</em> = Nd and <em>B</em> = Zr (Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>). It is reported that Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> gives rise to a magnetic fragmentation state in a magnetically ordered state. However, this phenomenon has not been confirmed in other Nd systems. The magnetic fragmentation phenomenon is a phenomenon that explains the magnetic ground state condition of the Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> pyrochlore material, so knowing whether this phenomenon or the signs of this phenomenon appearing in all pyrochlore material, especially in Nd-based pyrochlore systems is very important to be reviewed. Review articles regarding pyrochlore with various bases such as Gd, Er, and Tb were already published. However, the systematic literature review regarding Nd-based pyrochlore focusing on its magnetic properties is not available yet. The most important result of this review is that Nd-based pyrochlores with different <em>B</em> ions show different magnetic transitions. Moreover, the emergence of magnetic fragmentation states in magnetically ordered states was not found in systems other than Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>. In the future, studies of Nd-based pyrochlore can also focus on the correlation between physical properties and magnetic properties, together with its possible application.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"12 ","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405428324000042/pdfft?md5=ab8e31baedc672fa7159ad5bc522c5db&pid=1-s2.0-S2405428324000042-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Abreu , I. Boikov , M. Goldmann , T. Jonuzi , A. Lupo , S. Masaad , L. Nguyen , E. Picco , G. Pourcel , A. Skalli , L. Talandier , B. Vettelschoss , E.A. Vlieg , A. Argyris , P. Bienstman , D. Brunner , J. Dambre , L. Daudet , J.D. Domenech , I. Fischer , S.K. Turitsyn
{"title":"A photonics perspective on computing with physical substrates","authors":"S. Abreu , I. Boikov , M. Goldmann , T. Jonuzi , A. Lupo , S. Masaad , L. Nguyen , E. Picco , G. Pourcel , A. Skalli , L. Talandier , B. Vettelschoss , E.A. Vlieg , A. Argyris , P. Bienstman , D. Brunner , J. Dambre , L. Daudet , J.D. Domenech , I. Fischer , S.K. Turitsyn","doi":"10.1016/j.revip.2024.100093","DOIUrl":"10.1016/j.revip.2024.100093","url":null,"abstract":"<div><p>We provide a perspective on the fundamental relationship between physics and computation, exploring the conditions under which a physical system can be harnessed for computation and the practical means to achieve this. Unlike traditional digital computers that impose discreteness on continuous substrates, unconventional computing embraces the inherent properties of physical systems. Exploring simultaneously the intricacies of physical implementations and applied computational paradigms, we discuss the interdisciplinary developments of unconventional computing. Here, we focus on the potential of photonic substrates for unconventional computing, implementing artificial neural networks to solve data-driven machine learning tasks. Several photonic neural network implementations are discussed, highlighting their potential advantages over electronic counterparts in terms of speed and energy efficiency. Finally, we address the challenges of achieving learning and programmability within physical substrates, outlining key strategies for future research.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"12 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405428324000030/pdfft?md5=00dd40c0315d911920d9b0566304beed&pid=1-s2.0-S2405428324000030-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141409029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vasilis Belis, Patrick Odagiu, Thea Klaeboe Aarrestad
{"title":"Machine learning for anomaly detection in particle physics","authors":"Vasilis Belis, Patrick Odagiu, Thea Klaeboe Aarrestad","doi":"10.1016/j.revip.2024.100091","DOIUrl":"https://doi.org/10.1016/j.revip.2024.100091","url":null,"abstract":"<div><p>The detection of out-of-distribution data points is a common task in particle physics. It is used for monitoring complex particle detectors or for identifying rare and unexpected events that may be indicative of new phenomena or physics beyond the Standard Model. Recent advances in Machine Learning for anomaly detection have encouraged the utilization of such techniques on particle physics problems. This review article provides an overview of the state-of-the-art techniques for anomaly detection in particle physics using machine learning. We discuss the challenges associated with anomaly detection in large and complex data sets, such as those produced by high-energy particle colliders, and highlight some of the successful applications of anomaly detection in particle physics experiments.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"12 ","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405428324000017/pdfft?md5=d417969ba761917f6077443646ceae07&pid=1-s2.0-S2405428324000017-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139549381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A brief review of a modified relativity that explains cosmological constant","authors":"Cláudio Nassif Cruz , A.C. Amaro de Faria Jr.","doi":"10.1016/j.revip.2023.100088","DOIUrl":"https://doi.org/10.1016/j.revip.2023.100088","url":null,"abstract":"<div><p>The present review aims to show that a modified space–time with an invariant minimum speed provides a relation with Weyl geometry in the Newtonian approximation of weak-field. The deformed Special Relativity so-called Symmetrical Special Relativity (SSR) has an invariant minimum speed <span><math><mi>V</mi></math></span>, which is associated with a preferred reference frame <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> for representing the vacuum energy, thus leading to the cosmological constant (<span><math><mi>Λ</mi></math></span>). The equation of state (EOS) of vacuum energy for <span><math><mi>Λ</mi></math></span>, i.e., <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>Λ</mi></mrow></msub><mo>=</mo><mi>ϵ</mi><mo>=</mo><mo>−</mo><mi>p</mi></mrow></math></span> emerges naturally from such space–time, where <span><math><mi>p</mi></math></span> is the pressure and <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>Λ</mi></mrow></msub><mo>=</mo><mi>ϵ</mi></mrow></math></span> is the vacuum energy density. With the aim of establishing a relationship between <span><math><mi>V</mi></math></span> and <span><math><mi>Λ</mi></math></span> in the modified metric of the space–time, we should consider a dark spherical universe with Hubble radius <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span>, having a very low value of <span><math><mi>ϵ</mi></math></span> that governs the accelerated expansion of universe. In doing this, we aim to show that SSR-metric has an equivalence with a de-Sitter (dS)-metric (<span><math><mrow><mi>Λ</mi><mo>></mo><mn>0</mn></mrow></math></span>). On the other hand, according to the Boomerang experiment that reveals a slightly accelerated expansion of the universe, SSR leads to a dS-metric with an approximation for <span><math><mrow><mi>Λ</mi><mo><</mo><mo><</mo><mn>1</mn></mrow></math></span> close to a flat space–time, which is in the <span><math><mrow><mi>Λ</mi><mi>C</mi><mi>D</mi><mi>M</mi></mrow></math></span> scenario where the space is quasi-flat, so that <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>+</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>Λ</mi></mrow></msub><mo>≈</mo><mn>1</mn></mrow></math></span>. We have <span><math><mrow><mi>Ω</mi><mi>c</mi><mi>d</mi><mi>m</mi><mo>≈</mo><mn>23</mn><mtext>%</mtext></mrow></math></span> by representing dark cold matter, <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>≈</mo><mn>27</mn><mtext>%</mtext></mrow></math></span> for matter and <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>Λ</mi></mrow></msub><mo>≈</mo><mn>73</mn><mtext>%</mtext></mrow></math></span> for the vacuum energy. Thus, the theory is adjusted for the redshift <span><math><mrow><mi>z</mi><mo>=</mo><mn>1</mn></mrow></math></span>. This corresponds to the time <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>0</mn></mrow></msub></ma","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"11 ","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71746995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}