{"title":"磁化等离子体拓扑边缘态中空间弥散的影响","authors":"João C. Serra, Mário G. Silveirinha","doi":"10.1016/j.revip.2025.100108","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional Chern insulators are two-dimensional periodic structures that support unidirectional edge states at the boundary, while the wave propagation in the bulk regions is forbidden. The number of unidirectional edge states is governed by the gap Chern number, a topological invariant that depends on the global properties of the system over the entire wavevector space. This concept can also be extended to systems with a continuous translational symmetry provided they satisfy a regularization condition for large wavenumbers. Here, we discuss how the spatial dispersion, notably the high-spatial frequency behavior of the material response, critically influences the topological properties, and consequently, the net number of unidirectional edge states. In particular, we show that seemingly small perturbations of a local magnetized plasma can lead to distinct Chern phases and, consequently, markedly different edge state dispersions.</div></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"13 ","pages":"Article 100108"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of spatial dispersion in the topological edge states of magnetized plasmas\",\"authors\":\"João C. Serra, Mário G. Silveirinha\",\"doi\":\"10.1016/j.revip.2025.100108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional Chern insulators are two-dimensional periodic structures that support unidirectional edge states at the boundary, while the wave propagation in the bulk regions is forbidden. The number of unidirectional edge states is governed by the gap Chern number, a topological invariant that depends on the global properties of the system over the entire wavevector space. This concept can also be extended to systems with a continuous translational symmetry provided they satisfy a regularization condition for large wavenumbers. Here, we discuss how the spatial dispersion, notably the high-spatial frequency behavior of the material response, critically influences the topological properties, and consequently, the net number of unidirectional edge states. In particular, we show that seemingly small perturbations of a local magnetized plasma can lead to distinct Chern phases and, consequently, markedly different edge state dispersions.</div></div>\",\"PeriodicalId\":37875,\"journal\":{\"name\":\"Reviews in Physics\",\"volume\":\"13 \",\"pages\":\"Article 100108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405428325000085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428325000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Influence of spatial dispersion in the topological edge states of magnetized plasmas
Conventional Chern insulators are two-dimensional periodic structures that support unidirectional edge states at the boundary, while the wave propagation in the bulk regions is forbidden. The number of unidirectional edge states is governed by the gap Chern number, a topological invariant that depends on the global properties of the system over the entire wavevector space. This concept can also be extended to systems with a continuous translational symmetry provided they satisfy a regularization condition for large wavenumbers. Here, we discuss how the spatial dispersion, notably the high-spatial frequency behavior of the material response, critically influences the topological properties, and consequently, the net number of unidirectional edge states. In particular, we show that seemingly small perturbations of a local magnetized plasma can lead to distinct Chern phases and, consequently, markedly different edge state dispersions.
期刊介绍:
Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.