含频率合成维数的Floquet电路的次谐波振荡

Q1 Physics and Astronomy
Bo Lv , Shiyun Xia , Ye Tian , Ting Liu , Hongyang Mu , Zhichao Shen , Sijie Wang , Zheng Zhu , Huibin Tao , Fanyi Meng , Jinhui Shi
{"title":"含频率合成维数的Floquet电路的次谐波振荡","authors":"Bo Lv ,&nbsp;Shiyun Xia ,&nbsp;Ye Tian ,&nbsp;Ting Liu ,&nbsp;Hongyang Mu ,&nbsp;Zhichao Shen ,&nbsp;Sijie Wang ,&nbsp;Zheng Zhu ,&nbsp;Huibin Tao ,&nbsp;Fanyi Meng ,&nbsp;Jinhui Shi","doi":"10.1016/j.revip.2025.100105","DOIUrl":null,"url":null,"abstract":"<div><div>The period-doubling oscillation emerges due to the coexistence of zero and π modes in Floquet topological insulators (FTIs). Here, leveraging the flexibility of the electric circuit, we construct a circuit with frequency-synthetic dimension to realize the FTIs of a periodically-driven model and demonstrate the topological edge states of zero and π modes. In contrast to the period-doubling oscillations observed in FTIs, the circuit exhibits deeply-subharmonic oscillations with periods extensively exceeding the doubling-driven period. Furthermore, we explore the band of the circuit with the equivalent-enhanced periodically-driven strength. Our method provides a flexible scheme to study Floquet topological phases, and open a new path for realizing the deeply subwavelength system.</div></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"13 ","pages":"Article 100105"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subharmonic oscillations in the Floquet circuit with the frequency-synthesis dimension\",\"authors\":\"Bo Lv ,&nbsp;Shiyun Xia ,&nbsp;Ye Tian ,&nbsp;Ting Liu ,&nbsp;Hongyang Mu ,&nbsp;Zhichao Shen ,&nbsp;Sijie Wang ,&nbsp;Zheng Zhu ,&nbsp;Huibin Tao ,&nbsp;Fanyi Meng ,&nbsp;Jinhui Shi\",\"doi\":\"10.1016/j.revip.2025.100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The period-doubling oscillation emerges due to the coexistence of zero and π modes in Floquet topological insulators (FTIs). Here, leveraging the flexibility of the electric circuit, we construct a circuit with frequency-synthetic dimension to realize the FTIs of a periodically-driven model and demonstrate the topological edge states of zero and π modes. In contrast to the period-doubling oscillations observed in FTIs, the circuit exhibits deeply-subharmonic oscillations with periods extensively exceeding the doubling-driven period. Furthermore, we explore the band of the circuit with the equivalent-enhanced periodically-driven strength. Our method provides a flexible scheme to study Floquet topological phases, and open a new path for realizing the deeply subwavelength system.</div></div>\",\"PeriodicalId\":37875,\"journal\":{\"name\":\"Reviews in Physics\",\"volume\":\"13 \",\"pages\":\"Article 100105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240542832500005X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240542832500005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在Floquet拓扑绝缘子(FTIs)中,由于零模式和π模式共存而产生倍周期振荡。在这里,利用电路的灵活性,我们构建了一个具有频率合成维度的电路来实现周期驱动模型的fti,并演示了零模式和π模式的拓扑边缘状态。与fti中观察到的倍周期振荡相反,该电路表现出周期大大超过倍驱动周期的深次谐波振荡。此外,我们探索了具有等效增强周期性驱动强度的电路的频带。该方法为研究Floquet拓扑相位提供了一种灵活的方案,为实现深度亚波长系统开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subharmonic oscillations in the Floquet circuit with the frequency-synthesis dimension
The period-doubling oscillation emerges due to the coexistence of zero and π modes in Floquet topological insulators (FTIs). Here, leveraging the flexibility of the electric circuit, we construct a circuit with frequency-synthetic dimension to realize the FTIs of a periodically-driven model and demonstrate the topological edge states of zero and π modes. In contrast to the period-doubling oscillations observed in FTIs, the circuit exhibits deeply-subharmonic oscillations with periods extensively exceeding the doubling-driven period. Furthermore, we explore the band of the circuit with the equivalent-enhanced periodically-driven strength. Our method provides a flexible scheme to study Floquet topological phases, and open a new path for realizing the deeply subwavelength system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Physics
Reviews in Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
21.30
自引率
0.00%
发文量
8
审稿时长
98 days
期刊介绍: Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信