{"title":"Sound-induced motility of outer hair cells explained by stochastic resonance in nanometric sensors in the lateral wall","authors":"Einat Shapira , Rémy Pujol , Michael Plaksin , Eitan Kimmel","doi":"10.1016/j.phmed.2016.06.001","DOIUrl":"https://doi.org/10.1016/j.phmed.2016.06.001","url":null,"abstract":"<div><p>The mechanism of mammalian hearing has intrigued scientists for decades. It is widely assumed that the process of hearing begins when sound reaches the inner ear and causes the basilar membrane (BM) to vibrate. These vibrations are then detected and consequently amplified by the outer hair cells (OHCs). We question this sequence of events and the inauguration of sound-induced motility, i.e. transformation of sound pressure wave into directional vibrations. Based on the morphology of the mammalian cochlea, we suggest that motility of the OHCs could be due to the synchronized action of hundreds of thousands of nanometric acoustic sensors-actuators in the OHC’s lateral wall. We propose that stochastic resonance in these nanometric units can account for all of the major features of mammalian hearing: a wide dynamic range; sharp frequency selectivity; generation of spontaneous otoacoustic emissions; and the ability to process relatively high frequencies. The proposed model might inspire the design of hypersensitive sensors and actuators, which potentially could be incorporated into new types of hearing aids.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"2 ","pages":"Pages 1-11"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2016.06.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137252879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph Vögtlin, Georg Schulz, Kurt Jäger, Bert Müller
{"title":"Comparing the accuracy of master models based on digital intra-oral scanners with conventional plaster casts","authors":"Christoph Vögtlin, Georg Schulz, Kurt Jäger, Bert Müller","doi":"10.1016/j.phmed.2016.04.002","DOIUrl":"https://doi.org/10.1016/j.phmed.2016.04.002","url":null,"abstract":"<div><p>For the fabrication of dental inlays and crowns precise information on patients' teeth morphology is required. Besides the conventional method, where mold materials impressions are prepared, the use of digital scanners is more and more becoming a central part in the nowadays dentistry. The aim of the manuscript is to compare the accuracy of master models based on two intra-oral digital scanners and silicone impressions. A metal cast reference arch model with predefined measurement points was scanned using the Lava™ Chairside Oral Scanner C.O.S. and the iTero™ Intraoral Scanner respectively. These scans were applied for the fabrication of models using rapid prototyping and milling from a proprietary resin. In addition, plaster models were produced using conventional A-silicone impressions. Using a coordinate measuring machine and a micro computed tomography scanner the models were evaluated with micrometer precision. The mean distance deviations from model to model correspond to 112 μm (C.O.S.), 50 μm (iTero™) and 16 μm (gypsum). The results verified the high precision of the conventional technique based on A-silicone impressions and plaster models. The accuracy of the master models obtained on the basis of the digital scans is clinically sufficient to fabricate bridges with up to four units.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"1 ","pages":"Pages 20-26"},"PeriodicalIF":0.0,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2016.04.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92056560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physics in Medicine – Open access journal","authors":"","doi":"10.1016/j.phmed.2016.04.003","DOIUrl":"https://doi.org/10.1016/j.phmed.2016.04.003","url":null,"abstract":"","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"1 ","pages":"Page 1"},"PeriodicalIF":0.0,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2016.04.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136834743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Torsten Wagner , Wolfgang Vornholt , Carl Frederik Werner , Tatsuo Yoshinobu , Ko-ichiro Miyamoto , Michael Keusgen , Michael J. Schöning
{"title":"Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening","authors":"Torsten Wagner , Wolfgang Vornholt , Carl Frederik Werner , Tatsuo Yoshinobu , Ko-ichiro Miyamoto , Michael Keusgen , Michael J. Schöning","doi":"10.1016/j.phmed.2016.03.001","DOIUrl":"https://doi.org/10.1016/j.phmed.2016.03.001","url":null,"abstract":"<div><p>The light-addressable potentiometric sensor (LAPS) has the unique feature to address different regions of a sensor surface without the need of complex structures. Measurements at different locations on the sensor surface can be performed in a common analyte solution, which distinctly simplifies the fluidic set-up. However, the measurement in a single analyte chamber prevents the application of different drugs or different concentrations of a drug to each measurement spot at the same time as in the case of multi-reservoir-based set-ups. In this work, the authors designed a LAPS-based set-up for cell culture screening that utilises magnetic beads loaded with the endotoxin (lipopolysaccharides, LPS), to generate a spatially distributed gradient of analyte concentration. Different external magnetic fields can be adjusted to move the magnetic beads loaded with a specific drug within the measurement cell. By recording the metabolic activities of a cell layer cultured on top of the LAPS surface, this work shows the possibility to apply different concentrations of a sample along the LAPS measurement spots within a common analyte solution.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"1 ","pages":"Pages 2-7"},"PeriodicalIF":0.0,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2016.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92056562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}