{"title":"Sound-induced motility of outer hair cells explained by stochastic resonance in nanometric sensors in the lateral wall","authors":"Einat Shapira , Rémy Pujol , Michael Plaksin , Eitan Kimmel","doi":"10.1016/j.phmed.2016.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanism of mammalian hearing has intrigued scientists for decades. It is widely assumed that the process of hearing begins when sound reaches the inner ear and causes the basilar membrane (BM) to vibrate. These vibrations are then detected and consequently amplified by the outer hair cells (OHCs). We question this sequence of events and the inauguration of sound-induced motility, i.e. transformation of sound pressure wave into directional vibrations. Based on the morphology of the mammalian cochlea, we suggest that motility of the OHCs could be due to the synchronized action of hundreds of thousands of nanometric acoustic sensors-actuators in the OHC’s lateral wall. We propose that stochastic resonance in these nanometric units can account for all of the major features of mammalian hearing: a wide dynamic range; sharp frequency selectivity; generation of spontaneous otoacoustic emissions; and the ability to process relatively high frequencies. The proposed model might inspire the design of hypersensitive sensors and actuators, which potentially could be incorporated into new types of hearing aids.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"2 ","pages":"Pages 1-11"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2016.06.001","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352451016300051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
The mechanism of mammalian hearing has intrigued scientists for decades. It is widely assumed that the process of hearing begins when sound reaches the inner ear and causes the basilar membrane (BM) to vibrate. These vibrations are then detected and consequently amplified by the outer hair cells (OHCs). We question this sequence of events and the inauguration of sound-induced motility, i.e. transformation of sound pressure wave into directional vibrations. Based on the morphology of the mammalian cochlea, we suggest that motility of the OHCs could be due to the synchronized action of hundreds of thousands of nanometric acoustic sensors-actuators in the OHC’s lateral wall. We propose that stochastic resonance in these nanometric units can account for all of the major features of mammalian hearing: a wide dynamic range; sharp frequency selectivity; generation of spontaneous otoacoustic emissions; and the ability to process relatively high frequencies. The proposed model might inspire the design of hypersensitive sensors and actuators, which potentially could be incorporated into new types of hearing aids.
期刊介绍:
The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.