OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100176
Amany M. Mohamed , Nagwa I. Toaleb , Ahmad Mohammad Allam , Sahar Hussein Abdalla Hekal , Sherein S. Abdelgayed , Abeer S. Hassan
{"title":"Preparation and Characterization of Alginate Nanocarriers as Mucoadhesive Intranasal Delivery Systems for Ameliorating Antibacterial Effect of Rutin Against Pasteurella Multocida Infection in Mice","authors":"Amany M. Mohamed , Nagwa I. Toaleb , Ahmad Mohammad Allam , Sahar Hussein Abdalla Hekal , Sherein S. Abdelgayed , Abeer S. Hassan","doi":"10.1016/j.onano.2023.100176","DOIUrl":"10.1016/j.onano.2023.100176","url":null,"abstract":"<div><p>Rutin is a natural product has various biological activities. Pasteurellosis is crucial bacterial infection of respiratory system caused by <em>Pasteurella multocida</em>. This study aimed to investigate the improved antibacterial effect of Rutin nanocarriers as mucoadhesive intranasal delivery against <em>Pasteurella multocida</em>. Different formulations of Rutin niosomes and nanostructure lipid carriers (NLCs) were formulated and well characterized. The in vivo antibacterial performance of the developed formulations against <em>Pasteurella multocida</em> in infected mice was conducted. Further, cytokines levels of Interferon Gamma (INF-γ) and Interlukin-12 (IL -12) in mice sera were assessed. The results revealed that developed Rutin nanocarriers were in nanosized range and exhibited high drug encapsulation. However, Rutin NLCs showed smaller particle size (240.34 ± 5.5 nm), higher encapsulation% (97.34 ± 0.15%), and higher drug release of 94.5% within 12 h comparing with Rutin niosomes. Further, Rutin NLCs presented the highest antibacterial effect against <em>P. multocida</em> infection compared with other treated groups. The bacterial count in lungs and livers was reduced in treated groups compared to the infected non treated one. Our results indicate that mucoadhesive Rutin nanocarriers introduce a new promising antibacterial agent for intranasal delivery against <em>P. multocida</em> and open vision for veterinary applications to utilize advanced nanocarriers in the management of several infections.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100176"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43937062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100169
Sarah Almofty , Vijaya Ravinayagam , Norah Alghamdi , Wejdan Alghamdi , Zainab Albazroun , Layan Almulla , Sultan Akhtar , Ali Awad Almofleh , Gazali Tanimu , H. Dafalla , B. Rabindran Jermy
{"title":"Effect of CeO2/spherical silica and halloysite nanotubes engineered for targeted drug delivery system to treat breast cancer cells","authors":"Sarah Almofty , Vijaya Ravinayagam , Norah Alghamdi , Wejdan Alghamdi , Zainab Albazroun , Layan Almulla , Sultan Akhtar , Ali Awad Almofleh , Gazali Tanimu , H. Dafalla , B. Rabindran Jermy","doi":"10.1016/j.onano.2023.100169","DOIUrl":"10.1016/j.onano.2023.100169","url":null,"abstract":"<div><p>Cerium oxide nanoparticles (CeO<sub>2</sub> NPs) and flavonoid curcumin that has been widely studied for treating diseases involving high reactive oxygen species (ROS). In nanotherapeutics, the particle size, shape, metal oxide dispersity and surface properties of nanocarriers are vital for drug delivery and therapeutic efficiency. Here, cisplatin release behavior on cerium impregnated two different shaped nanocarriers, CeO<sub>2</sub>/monodispersed spherical silica (Sil) and CeO<sub>2</sub>/halloysite (Hal) nanotube was studied for potential anti-cancer therapies. For comparison, CeO<sub>2</sub> impregnated mesoporous silica MCM-41, SBA-16, Hydroxyapatite and clay were prepared. Subsequently, the nanocomposites were coated with curcumin (25% wt/wt), and cisplatin (Cp) functionalization (5% wt/wt). 5wt%CeO<sub>2</sub>/Hal/Cp and 5wt%CeO<sub>2</sub>/Sil/Cp samples were pegylated using lyophilization technique. Physico-chemical analyses revealed the nanosized distribution of CeO<sub>2</sub> and functionalization of cisplatin and curcumin. Cp release was studied using automated Franz cell and dialysis membrane techniques. The different structured nanocarriers delivering mechanism was studied by determining the drug kinetic release using four different kinetic models (first order, second order, Higuchi and Korsmeyer-Peppas). <em>In vitro</em> cytotoxicity assay of nano formulations along with free cisplatin and curcumin (Cur) were tested against the breast cancer cell line (MCF-7) for multiple timepoints by MTT assay. The results reveled the efficacy of 5wt%CeO<sub>2</sub>/Sil/Cp/Cur nanoparticles in delivering cisplatin. On the other hand, 5wt%CeO<sub>2</sub>/Hal/Cur nanoparticles enhanced the uptake of curcumin in comparison to free curcumin. Overall, pegylated CeO<sub>2</sub>/Silica nano formulation demonstrated an effective carrier to cisplatin for potential treatment of breast cancer.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100169"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45335433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100167
Coulibaly S. Fohona , Vivek Agrahari , Naveen K. Vaidya , Bi-Botti C. Youan
{"title":"Modelling tenofovir release kinetics from hyaluronidase-sensitive nanomedicine: A deterministic approach","authors":"Coulibaly S. Fohona , Vivek Agrahari , Naveen K. Vaidya , Bi-Botti C. Youan","doi":"10.1016/j.onano.2023.100167","DOIUrl":"10.1016/j.onano.2023.100167","url":null,"abstract":"<div><p>Despite being convenient and practical, current nanomedicine (NM) release kinetic models remain unscalable, non-specific and less descriptive of the underlying physicochemical determinants. However, a deterministic mathematical modelling could overcome these limitations. In this study, we develop a model, based on a system of two differential equations (accounting for nanoparticle (NP) degradation and then drug release from degraded NM), which enable us to estimate per capita rate constant α (#NP degraded/hr) and β (Drug Amount Released/NP), the net effect of the nanomedicine (NE factor ɣ= α.β) and the controlled release index (φ, ratio of drug release to NP degradation). The model analysis conducted with tenofovir loaded hyaluronidase sensitive NM clearly shows the α factor significantly increased with triggering stimuli due to its enzymatic action on its substrate (hyaluronic acid). However, the β factor remained relatively unchanged, due to intrinsic physicochemical properties of the drug as limiting factor. The application of the solutions of this model clearly enabled us to effectively screen among various nanoformulations and identified the best hyaluronidase-sensitive NM formulation, exhibiting the highest ratio (3.7-fold increase compared to no enzyme). The φ value confirmed the controlled release and stimuli sensitivity of the nanosystem. Moreover, the computed drug release rate (dM/dt) is consistent with other existing mathematical models (under valid assumption). The key advantages of this approach are i) relevancy to underlying physicochemical and biochemical process, ii) versatility and application to various NM kinetics, and iii) prediction of temporo-spatial distribution of the drug loaded NP that could potentially improve <em>in-vitro/in vivo</em> correlation study. This unique approach is applicable for a more specific and more meaningful/physicochemically relevant description of bioactive agents release from NM or NP for various applications.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100167"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42037157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phytonanomedicine: A therapeutic approach for cervical cancer","authors":"Shama Parveen , Shireen Masood , Saurabh Kumar, Monisha Banerjee","doi":"10.1016/j.onano.2023.100178","DOIUrl":"10.1016/j.onano.2023.100178","url":null,"abstract":"<div><p>Cervical cancer has historically been the deadliest malignancy in women. It continues to create several health issues, particularly in developing countries. Current management techniques include cisplatin-based chemoradiotherapy and surgical procedures. These treatments have some drawbacks, such as low absorption, side effects, systemic toxicity, the development of resistance to various therapeutics, and targeting that is too broad and insufficiently precise. To compensate for these shortcomings, researchers are still hunting for novel anticancer drugs. Plant-derived phytochemicals and their derivatives have promise for improving cancer treatment efficacy while reducing adverse effects. Phytomolecules are utilized to treat cancer, but they are difficult to work with since they have low bioavailability, excessive dosages, negative side effects and low therapeutic indices. They must be administered in high doses to be effective and nanotechnology can be utilized to overcome these obstructions. Piperlongumine, rutin, quercetin, lycopene, leutin, curcumin, green tea polyphenols, and other phytomolecules have been loaded into a carrier called nanophytomedicine to be beneficial in chemoprevention and chemotherapy. Nanocarriers have a high level of biocompatibility, biodegradability, and biological stability. Nano-based drug delivery systems are an excellent approach to improving therapeutic specificity, making it easier for the body to absorb it reducing the drug's breakdown and systemic toxicity. This review looks at phytonanomedicine and how it can be used to treat cervical cancer instead of traditional chemo-radiotherapy.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100178"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45048561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100174
Moqbel Ali Moqbel Redhwan , Hariprasad M.G , Suman Samaddar , Sumaia Abdulbari Ahmed Ali Hard
{"title":"siRNA a promising tool for diabetes complications","authors":"Moqbel Ali Moqbel Redhwan , Hariprasad M.G , Suman Samaddar , Sumaia Abdulbari Ahmed Ali Hard","doi":"10.1016/j.onano.2023.100174","DOIUrl":"10.1016/j.onano.2023.100174","url":null,"abstract":"<div><p>RNA interference (RNAi) is a naturally occurring process of gene regulation that has been harnessed to silence specific genes in various cell types, including those involved in diabetes complications. Small interfering RNA (siRNA) is an RNA molecule that activates RNAi and targets specific genes for degradation. Recent research has demonstrated that siRNA holds promise as a tool for treating diabetes complications, including diabetic neuropathy, retinopathy, and nephropathy. In preclinical studies, siRNA has been shown to effectively target genes involved in these complications, resulting in improved clinical outcomes. One potential advantage of siRNA therapy is its ability to selectively target specific genes without disrupting endogenous mRNA pathways, which reduces the risk of off-target effects. Additionally, siRNA has the potential to provide long-lasting effects with a single dose, which could result in reduced treatment frequency and improved patient compliance. While promising preclinical results have been, several challenges still need to be addressed before siRNA can be used in clinical practice. These include delivery issues, as siRNA molecules rapidly degrade in the bloodstream and cannot cross cell membranes without assistance. Despite these challenges, the potential of siRNA as a tool for treating diabetes complications is exciting, and further research is needed to determine its safety and efficacy in clinical trials. With continued investigation and refinement, siRNA has the potential to become an important therapeutic tool for the treatment of diabetes complications, improving patient outcomes and quality of life.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100174"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47118081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100181
Dinh-Toi Chu , Hue Vu Thi , Tiep Tien Nguyen , Thuy-Duong Vu , Yen Vy Nguyen Thi , Indra Mani , Nisarg Gohil , Gargi Bhattacharjee , Suresh Ramakrishna , Vijai Singh
{"title":"Nanotechnology and nucleic acid nanoparticles for treatment of metabolic disorders","authors":"Dinh-Toi Chu , Hue Vu Thi , Tiep Tien Nguyen , Thuy-Duong Vu , Yen Vy Nguyen Thi , Indra Mani , Nisarg Gohil , Gargi Bhattacharjee , Suresh Ramakrishna , Vijai Singh","doi":"10.1016/j.onano.2023.100181","DOIUrl":"https://doi.org/10.1016/j.onano.2023.100181","url":null,"abstract":"<div><p>Metabolic disorders result from inborn and acquired dysfunction of organs and tissues that are responsible for producing energy in the body. These diseases are now among the most prevalent maladies in the world. Treatment often requires addressing individual conditions, including obesity, diabetes, and liver diseases with a combination of multiple drugs. Accumulating evidence shows that the defects or overexpression of some specific genes in the diseased organ cause such diseases. Therefore, advanced options are required to control them at the molecular level. In this review, we highlight the current approaches of nanotechnologies, especially for delivering exogenous nucleic acid nanoparticles to treat metabolic disorders. We also summarize the mechanisms of how various nucleic acid nanoparticles have been utilized, the trends, and the potential applications of these materials in metabolic disorders. Greater knowledge of nanotechnologies and nucleic acid particles may pave the way to cure these prevalent diseases effectively.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100181"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49723359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100175
Mehrab Pourmadadi , Mohammad Mahdi Eshaghi , Meysam Shaghaghi , Sabya Sachi Das , Rabia Arshad , Suresh Ghotekar , Abbas Rahdar , Amanda-Lee Ezra Manicum , Sadanand Pandey
{"title":"Nano-scale drug delivery systems for carboplatin: A comprehensive review","authors":"Mehrab Pourmadadi , Mohammad Mahdi Eshaghi , Meysam Shaghaghi , Sabya Sachi Das , Rabia Arshad , Suresh Ghotekar , Abbas Rahdar , Amanda-Lee Ezra Manicum , Sadanand Pandey","doi":"10.1016/j.onano.2023.100175","DOIUrl":"10.1016/j.onano.2023.100175","url":null,"abstract":"<div><p>Carboplatin (CRBP) is a chemotherapeutic agent based on platinum that has applications in the effective management of ovarian, testis, cervical, neck, head, and small cell lung cancer. CRBP prevents duplication and transcription by binding to the DNA of tumor cells to inhibit the growth and division of cancer cells. CRBP has some limitations such as destroying normal cells alongside cancer cells and being poor at uptake by the cells, leading to the need for high doses, which has prompted significant attention to develop a targeted and localized delivery system that is effective for this anticancer drug. It is common to use CRBP in drug combination therapy. However, there are some disadvantages that could be overcome with nanoparticulate systems. Nano-engineered delivery systems can be an efficient approach to enhancing the cellular uptake and accumulation of CRBP, leading to improving the therapeutic potential with negligible toxicity. CRBP has been encapsulated into various nano-delivery systems, including polymer-based nanocarriers and micelles, protein nanoparticles, lipid-based nanoparticles (liposomes and solid lipid nanoparticles), silica-based nanostructures, carbon nanoparticles and etc. Moreover, there is growing interest in stimuli-responsive delivery systems for cancer-targeted delivery using modes such as induced temperature changes, electric/magnetic fields, pH, ultrasound waves, light, and laser. Cancer targeting by drug delivery systems, owing to their selective targeting, efficacy, biocompatibility and high drug payload, provides an attractive alternative treatment; however, there are technical, therapeutic, manufacturing and clinical barriers that limit their use. In this regard, the need for robust analytical methods to determine biodistribution, PK and PD profile of liposomes was highlighted in addition to a critical gap between efficient preclinical to clinical efficacy predictive modeling. Systems with the ability of co-delivery also could be useful to decrease drug toxicity on healthy tissues and improve the bioavailability of CRBP.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100175"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48173631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-09-01DOI: 10.1016/j.onano.2023.100182
Marwan Abdelmahmoud Abdelkarim Maki, Meng Sheng Teng, Kin Fai Tan, Palanirajan Vijayaraj Kumar
{"title":"Polyamidoamine-stabilized and hyaluronic acid-functionalized gold nanoparticles for cancer therapy","authors":"Marwan Abdelmahmoud Abdelkarim Maki, Meng Sheng Teng, Kin Fai Tan, Palanirajan Vijayaraj Kumar","doi":"10.1016/j.onano.2023.100182","DOIUrl":"10.1016/j.onano.2023.100182","url":null,"abstract":"<div><p>Gold nanoparticles (AuNPs) are versatile nanomaterials that can be used as drug delivery systems and photothermal agents for cancer therapy. In this study, we developed a novel nanoplatform based on AuNPs using a modified one-pot chemical method for the synthesis of AuNPs using generation 3.0 highly branched biphasic polymeric (polyamidoamine) dendrimers as reducing and stabilizing agent, and hyaluronic acid (HA) as functional moiety. Tetrahydrocurcumin (THC) was chosen for this formulation to be encapsulated in the synthesized AuNPs and their efficacy as nanotherapeutics was investigated in vitro<em>.</em> The developed nanoplatform was characterized by various techniques and evaluated for its drug loading and release, cellular uptake, and cytotoxicity on Caco-2 cells. We found that the nanoplatform had optimal size, charge, stability, and solubility, and showed high encapsulation efficiency of THC. The nanoplatform exhibited pH-responsive drug release and enhanced cellular uptake of THC. The nanoplatform also induced apoptosis in Caco-2 cell line. The HA coating on the nanoplatform improved its biocompatibility and specificity, by facilitating its targeting to CD44 glycoprotein on Caco-2 cells. Our results suggest that the developed nanoplatform is a promising nanotherapeutic strategy for cancer therapy by co-delivering of anti-cancer agents and AuNPs to cancer cells.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100182"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43050084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-08-31DOI: 10.1016/j.onano.2023.100184
Liu-Ru Fang , Yu-Hua Wang , Zu-Zhao Xiong , Yu-Mei Wang
{"title":"Research progress of nanomaterials in tumor-targeted drug delivery and imaging therapy","authors":"Liu-Ru Fang , Yu-Hua Wang , Zu-Zhao Xiong , Yu-Mei Wang","doi":"10.1016/j.onano.2023.100184","DOIUrl":"10.1016/j.onano.2023.100184","url":null,"abstract":"<div><p>Cancer continues to threaten people's lives and health, and the number of deaths from cancer is very high each year. Traditional treatments such as chemotherapy and surgery are poorly selective and have many side effects. While traditional cancer treatments kill tumor cells, they also damage normal cells and cause a series of toxic side effects. Targeted therapy can compensate for the shortcomings of conventional therapies based on nanomaterials. This paper introduces novel nanomaterials commonly used in tumor-targeted drug delivery as well as imaging therapy, demonstrates the types of active and passive drug delivery systems, and gives examples of research and applications in the past three years. The characteristics of nanomaterials for tumor-targeted therapy and their recent research progress in tumor therapy are summarized. This paper provides theoretical and practical support for nanomaterial-based targeted drug delivery systems and imaging therapy for tumors and provides a reference for the development of nanomaterials for controlled targeted therapy for tumors.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100184"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46518065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OpenNanoPub Date : 2023-08-30DOI: 10.1016/j.onano.2023.100186
E.T. Aguayo Frías , D. Maza Vega , M.N. Calienni , C. Lillo , D.S. Vazquez , S.d.V. Alonso , J. Montanari
{"title":"Enhanced skin delivery of vismodegib-loaded rigid liposomes combined with ethosomes","authors":"E.T. Aguayo Frías , D. Maza Vega , M.N. Calienni , C. Lillo , D.S. Vazquez , S.d.V. Alonso , J. Montanari","doi":"10.1016/j.onano.2023.100186","DOIUrl":"10.1016/j.onano.2023.100186","url":null,"abstract":"<div><p>Vismodegib, first approved in 2012 for the treatment of basal cell carcinoma, is an inhibitor of the Hedgehog signaling pathway that becomes active in certain tumors. However, its secondary effects after oral administration and systemic distribution are severe. In this study, we loaded vismodegib into conventional liposomes, which are typically unable to penetrate the stratum corneum barrier effectively after topical application. We studied its skin penetration when co-administered with empty ethosomes, aimed at transiently disrupting the skin impermeability.The drug was successfully recovered from the deeper viable epidermal layers in an <em>in vitro</em> model. The preparation method for the liposomal formulation is reproducible and relatively straightforward to scale up. Furthermore, it involves the use of biocompatible lipids, thus avoiding the utilization of potentially risky compounds.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100186"},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45563024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}