Brain Informatics最新文献

筛选
英文 中文
Can heart rate sequences from wearable devices predict day-long mental states in higher education students: a signal processing and machine learning case study at a UK university. 来自可穿戴设备的心率序列能否预测高等教育学生一整天的精神状态:英国一所大学的信号处理和机器学习案例研究。
Brain Informatics Pub Date : 2024-12-05 DOI: 10.1186/s40708-024-00243-w
Tianhua Chen
{"title":"Can heart rate sequences from wearable devices predict day-long mental states in higher education students: a signal processing and machine learning case study at a UK university.","authors":"Tianhua Chen","doi":"10.1186/s40708-024-00243-w","DOIUrl":"10.1186/s40708-024-00243-w","url":null,"abstract":"<p><p>The mental health of students in higher education has been a growing concern, with increasing evidence pointing to heightened risks of developing mental health condition. This research aims to explore whether day-long heart rate sequences, collected continuously through Apple Watch in an open environment without restrictions on daily routines, can effectively indicate mental states, particularly stress for university students. While heart rate (HR) is commonly used to monitor physical activity or responses to isolated stimuli in a controlled setting, such as stress-inducing tests, this study addresses the gap by analyzing heart rate fluctuations throughout a day, examining their potential to gauge overall stress levels in a more comprehensive and real-world context. The data for this research was collected at a public university in the UK. Using signal processing, both original heart rate sequences and their representations, via Fourier transformation and wavelet analysis, have been modeled using advanced machine learning algorithms. Having achieving statistically significant results over the baseline, this provides a understanding of how heart rate sequences alone may be used to characterize mental states through signal processing and machine learning, with the system poised for further testing as the ongoing data collection continues.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"29"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate depth of anesthesia monitoring based on EEG signal complexity and frequency features. 基于脑电图信号复杂性和频率特性的精确麻醉深度监测。
Brain Informatics Pub Date : 2024-11-21 DOI: 10.1186/s40708-024-00241-y
Tianning Li, Yi Huang, Peng Wen, Yan Li
{"title":"Accurate depth of anesthesia monitoring based on EEG signal complexity and frequency features.","authors":"Tianning Li, Yi Huang, Peng Wen, Yan Li","doi":"10.1186/s40708-024-00241-y","DOIUrl":"10.1186/s40708-024-00241-y","url":null,"abstract":"<p><p>Accurate monitoring of the depth of anesthesia (DoA) is essential for ensuring patient safety and effective anesthesia management. Existing methods, such as the Bispectral Index (BIS), are limited in real-time accuracy and robustness. Current methods have problems in generalizability across diverse patient datasets and are sensitive to artifacts, making it difficult to provide reliable DoA assessments in real time. This study proposes a novel method for DoA monitoring using EEG signals, focusing on accuracy, robustness, and real-time application. EEG signals were pre-processed using wavelet denoising and discrete wavelet transform (DWT). Features such as Permutation Lempel-Ziv Complexity (PLZC) and Power Spectral Density (PSD) were extracted. A random forest regression model was employed to estimate anesthetic states, and an unsupervised learning method using the Hurst exponent algorithm and hierarchical clustering was introduced to detect transitions between anesthesia states. The method was tested on two independent datasets (UniSQ and VitalDB), achieving an average Pearson correlation coefficient of 0.86 and 0.82, respectively. For the combined dataset, the model demonstrated an R-squared value of 0.70, a RMSE of 6.31, a MAE of 8.38, and a Pearson correlation of 0.84, showcasing its robustness and generalizability. This approach offers a more accurate and reliable real-time DoA monitoring tool that could significantly improve patient safety and anesthesia management, especially in diverse clinical environments.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"28"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing EEG prediction with deep learning and uncertainty estimation. 利用深度学习和不确定性估计推进脑电图预测。
Brain Informatics Pub Date : 2024-10-26 DOI: 10.1186/s40708-024-00239-6
Mats Tveter, Thomas Tveitstøl, Christoffer Hatlestad-Hall, Ana S Pérez T, Erik Taubøll, Anis Yazidi, Hugo L Hammer, Ira R J Hebold Haraldsen
{"title":"Advancing EEG prediction with deep learning and uncertainty estimation.","authors":"Mats Tveter, Thomas Tveitstøl, Christoffer Hatlestad-Hall, Ana S Pérez T, Erik Taubøll, Anis Yazidi, Hugo L Hammer, Ira R J Hebold Haraldsen","doi":"10.1186/s40708-024-00239-6","DOIUrl":"10.1186/s40708-024-00239-6","url":null,"abstract":"<p><p>Deep Learning (DL) has the potential to enhance patient outcomes in healthcare by implementing proficient systems for disease detection and diagnosis. However, the complexity and lack of interpretability impede their widespread adoption in critical high-stakes predictions in healthcare. Incorporating uncertainty estimations in DL systems can increase trustworthiness, providing valuable insights into the model's confidence and improving the explanation of predictions. Additionally, introducing explainability measures, recognized and embraced by healthcare experts, can help address this challenge. In this study, we investigate DL models' ability to predict sex directly from electroencephalography (EEG) data. While sex prediction have limited direct clinical application, its binary nature makes it a valuable benchmark for optimizing deep learning techniques in EEG data analysis. Furthermore, we explore the use of DL ensembles to improve performance over single models and as an approach to increase interpretability and performance through uncertainty estimation. Lastly, we use a data-driven approach to evaluate the relationship between frequency bands and sex prediction, offering insights into their relative importance. InceptionNetwork, a single DL model, achieved 90.7% accuracy and an AUC of 0.947, and the best-performing ensemble, combining variations of InceptionNetwork and EEGNet, achieved 91.1% accuracy in predicting sex from EEG data using five-fold cross-validation. Uncertainty estimation through deep ensembles led to increased prediction performance, and the models were able to classify sex in all frequency bands, indicating sex-specific features across all bands.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"27"},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-modal EEG NEO-FFI with Trained Attention Layer (MENTAL) for mental disorder prediction. 多模态脑电图 NEO-FFI 与训练注意力层 (MENTAL),用于精神障碍预测。
Brain Informatics Pub Date : 2024-10-22 DOI: 10.1186/s40708-024-00240-z
Garrett Greiner, Yu Zhang
{"title":"Multi-modal EEG NEO-FFI with Trained Attention Layer (MENTAL) for mental disorder prediction.","authors":"Garrett Greiner, Yu Zhang","doi":"10.1186/s40708-024-00240-z","DOIUrl":"10.1186/s40708-024-00240-z","url":null,"abstract":"<p><p>Early detection and accurate diagnosis of mental disorders is difficult due to the complexity of the diagnostic process, resulting in conditions being left undiagnosed or misdiagnosed. Previous studies have demonstrated that features of Electroencephalogram (EEG) data, such as Power Spectral Density (PSD), are useful biomarkers for indicating the onset of various mental disorders. Existing models using EEG data are typically trained to distinguish between healthy and afflicted individuals, and they are unable to distinguish between individuals with different disorders. We propose MENTAL (Multi-modal EEG NEO-FFI with Trained Attention Layer) to predict an individual's mental state using both EEG and Neo-Five Factor Inventory (NEO-FFI) personality data. We include an attention layer that captures the interactions between personality traits and PSD features, and emphasizes the important PSD features. MENTAL features a Recurrent Neural Network (RNN) to model the temporal nature of EEG data. We train our model with the Two Decades Brainclinics Research Archive for Insights in Neuroscience (TDBRAIN) dataset, which consists of 1274 healthy and psychiatric individuals including over 30 different diagnoses. MENTAL is able to achieve 93.3% accuracy when trained to classify between healthy individuals and those with ADHD. When trained to identify individuals with ADHD from among 33 disorder classes, MENTAL improves accuracy from 70.5 to 81.7%. MENTAL also demonstrates over 20% improvement in predictive accuracy when trained for MDD prediction. For the multi-class classification task of three classes, MENTAL improves accuracy by 4%, and for five classes, by nearly 8%. MENTAL is the first multi-modal model that utilizes both EEG and NEO-FFI data for the task of mental disorder prediction. We are one of the first groups to utilize TDBRAIN for automated disorder classification. MENTAL is accessible and cost-effective, as EEG is more affordable than other neuroimaging methods such as MRI, and the NEO-FFI is a self- reported survey. Our model can lead to acceptance and support for individuals living with mental health challenges and improve quality of life in our society.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"26"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ensemble of vision transformer architectures for efficient Alzheimer's Disease classification. 用于高效阿尔茨海默病分类的视觉转换器架构集合。
Brain Informatics Pub Date : 2024-10-03 DOI: 10.1186/s40708-024-00238-7
Noushath Shaffi, Vimbi Viswan, Mufti Mahmud
{"title":"Ensemble of vision transformer architectures for efficient Alzheimer's Disease classification.","authors":"Noushath Shaffi, Vimbi Viswan, Mufti Mahmud","doi":"10.1186/s40708-024-00238-7","DOIUrl":"10.1186/s40708-024-00238-7","url":null,"abstract":"<p><p>Transformers have dominated the landscape of Natural Language Processing (NLP) and revolutionalized generative AI applications. Vision Transformers (VT) have recently become a new state-of-the-art for computer vision applications. Motivated by the success of VTs in capturing short and long-range dependencies and their ability to handle class imbalance, this paper proposes an ensemble framework of VTs for the efficient classification of Alzheimer's Disease (AD). The framework consists of four vanilla VTs, and ensembles formed using hard and soft-voting approaches. The proposed model was tested using two popular AD datasets: OASIS and ADNI. The ADNI dataset was employed to assess the models' efficacy under imbalanced and data-scarce conditions. The ensemble of VT saw an improvement of around 2% compared to individual models. Furthermore, the results are compared with state-of-the-art and custom-built Convolutional Neural Network (CNN) architectures and Machine Learning (ML) models under varying data conditions. The experimental results demonstrated an overall performance gain of 4.14% and 4.72% accuracy over the ML and CNN algorithms, respectively. The study has also identified specific limitations and proposes avenues for future research. The codes used in the study are made publicly available.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"25"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing brain image quality with 3D U-net for stripe removal in light sheet fluorescence microscopy. 利用 3D U-net 去除光片荧光显微镜中的条纹,提高大脑图像质量。
Brain Informatics Pub Date : 2024-09-26 DOI: 10.1186/s40708-024-00236-9
Changshan Li, Youqi Li, Hu Zhao, Liya Ding
{"title":"Enhancing brain image quality with 3D U-net for stripe removal in light sheet fluorescence microscopy.","authors":"Changshan Li, Youqi Li, Hu Zhao, Liya Ding","doi":"10.1186/s40708-024-00236-9","DOIUrl":"https://doi.org/10.1186/s40708-024-00236-9","url":null,"abstract":"<p><p>Light Sheet Fluorescence Microscopy (LSFM) is increasingly popular in neuroimaging for its ability to capture high-resolution 3D neural data. However, the presence of stripe noise significantly degrades image quality, particularly in complex 3D stripes with varying widths and brightness, posing challenges in neuroscience research. Existing stripe removal algorithms excel in suppressing noise and preserving details in 2D images with simple stripes but struggle with the complexity of 3D stripes. To address this, we propose a novel 3D U-net model for Stripe Removal in Light sheet fluorescence microscopy (USRL). This approach directly learns and removes stripes in 3D space across different scales, employing a dual-resolution strategy to effectively handle stripes of varying complexities. Additionally, we integrate a nonlinear mapping technique to normalize high dynamic range and unevenly distributed data before applying the stripe removal algorithm. We validate our method on diverse datasets, demonstrating substantial improvements in peak signal-to-noise ratio (PSNR) compared to existing algorithms. Moreover, our algorithm exhibits robust performance when applied to real LSFM data. Through extensive validation experiments, both on test sets and real-world data, our approach outperforms traditional methods, affirming its effectiveness in enhancing image quality. Furthermore, the adaptability of our algorithm extends beyond LSFM applications to encompass other imaging modalities. This versatility underscores its potential to enhance image usability across various research disciplines.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"24"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142355848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling biological memory network by an autonomous and adaptive multi-agent system 用自主自适应多代理系统模拟生物记忆网络
Brain Informatics Pub Date : 2024-09-14 DOI: 10.1186/s40708-024-00237-8
Hui Wei, Chenyue Feng, Fushun Li
{"title":"Modeling biological memory network by an autonomous and adaptive multi-agent system","authors":"Hui Wei, Chenyue Feng, Fushun Li","doi":"10.1186/s40708-024-00237-8","DOIUrl":"https://doi.org/10.1186/s40708-024-00237-8","url":null,"abstract":"At the intersection of computation and cognitive science, graph theory is utilized as a formalized description of complex relationships description of complex relationships and structures, but traditional graph models are static, lack the dynamic and autonomous behaviors of biological neural networks, rely on algorithms with a global view. This study introduces a multi-agent system (MAS) model based on the graph theory, each agent equipped with adaptive learning and decision-making capabilities, thereby facilitating decentralized dynamic information memory, modeling and simulation of the brain’s memory process. This decentralized approach transforms memory storage into the management of MAS paths, with each agent utilizing localized information for the dynamic formation and modification of these paths, different path refers to different memory instance. The model’s unique memory algorithm avoids a global view, instead relying on neighborhood-based interactions to enhance resource utilization. Emulating neuron electrophysiology, each agent’s adaptive learning behavior is represented through a microcircuit centered around a variable resistor. Using principles of Ohm’s and Kirchhoff’s laws, we validated the model’s efficacy in memorizing and retrieving data through computer simulations. This approach offers a plausible neurobiological explanation for memory realization and validates the memory trace theory at a system level.","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ictal-onset localization through effective connectivity analysis based on RNN-GC with intracranial EEG signals in patients with epilepsy. 基于 RNN-GC 与癫痫患者颅内脑电图信号的有效连通性分析,进行直角发病定位。
Brain Informatics Pub Date : 2024-08-23 DOI: 10.1186/s40708-024-00233-y
Xiaojia Wang, Yanchao Liu, Chunfeng Yang
{"title":"Ictal-onset localization through effective connectivity analysis based on RNN-GC with intracranial EEG signals in patients with epilepsy.","authors":"Xiaojia Wang, Yanchao Liu, Chunfeng Yang","doi":"10.1186/s40708-024-00233-y","DOIUrl":"10.1186/s40708-024-00233-y","url":null,"abstract":"<p><p>Epilepsy is one of the most common clinical diseases of the nervous system. The occurrence of epilepsy will bring many serious consequences, and some patients with epilepsy will develop drug-resistant epilepsy. Surgery is an effective means to treat this kind of patients, and lesion localization can provide a basis for surgery. The purpose of this study was to explore the functional types and connectivity evolution patterns of relevant regions of the brain during seizures. We used intracranial EEG signals from patients with epilepsy as the research object, and the method used was GRU-GC. The role of the corresponding area of each channel in the seizure process was determined by the introduction of group analysis. The importance of each area was analysed by introducing the betweenness centrality and PageRank centrality. The experimental results show that the classification method based on effective connectivity has high accuracy, and the role of the different regions of the brain could also change during the seizures. The relevant methods in this study have played an important role in preoperative assessment and revealing the functional evolution patterns of various relevant regions of the brain during seizures.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"22"},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HyEpiSeiD: a hybrid convolutional neural network and gated recurrent unit model for epileptic seizure detection from electroencephalogram signals. HyEpiSeiD:从脑电图信号中检测癫痫发作的混合卷积神经网络和门控递归单元模型。
Brain Informatics Pub Date : 2024-08-21 DOI: 10.1186/s40708-024-00234-x
Rajdeep Bhadra, Pawan Kumar Singh, Mufti Mahmud
{"title":"HyEpiSeiD: a hybrid convolutional neural network and gated recurrent unit model for epileptic seizure detection from electroencephalogram signals.","authors":"Rajdeep Bhadra, Pawan Kumar Singh, Mufti Mahmud","doi":"10.1186/s40708-024-00234-x","DOIUrl":"10.1186/s40708-024-00234-x","url":null,"abstract":"<p><p>Epileptic seizure (ES) detection is an active research area, that aims at patient-specific ES detection with high accuracy from electroencephalogram (EEG) signals. The early detection of seizure is crucial for timely medical intervention and prevention of further injuries of the patients. This work proposes a robust deep learning framework called HyEpiSeiD that extracts self-trained features from the pre-processed EEG signals using a hybrid combination of convolutional neural network followed by two gated recurrent unit layers and performs prediction based on those extracted features. The proposed HyEpiSeiD framework is evaluated on two public datasets, the UCI Epilepsy and Mendeley datasets. The proposed HyEpiSeiD model achieved 99.01% and 97.50% classification accuracy, respectively, outperforming most of the state-of-the-art methods in epilepsy detection domain.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"21"},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cortical dynamics of perception as trains of coherent gamma oscillations, with the pulvinar as central coordinator. 感知的皮层动力学表现为一连串连贯的伽马振荡,而脉络膜是中心协调器。
Brain Informatics Pub Date : 2024-08-20 DOI: 10.1186/s40708-024-00235-w
J Farineau, R Lestienne
{"title":"Cortical dynamics of perception as trains of coherent gamma oscillations, with the pulvinar as central coordinator.","authors":"J Farineau, R Lestienne","doi":"10.1186/s40708-024-00235-w","DOIUrl":"10.1186/s40708-024-00235-w","url":null,"abstract":"<p><p>Synchronization of spikes carried by the visual streams is strategic for the proper binding of cortical assemblies, hence for the perception of visual objects as coherent units. Perception of a complex visual scene involves multiple trains of gamma oscillations, coexisting at each stage in visual and associative cortex. Here, we analyze how this synchrony is managed, so that the perception of each visual object can emerge despite this complex interweaving of cortical activations. After a brief review of structural and temporal facts, we analyze the interactions which make the oscillations coherent for the visual elements related to the same object. We continue with the propagation of these gamma oscillations within the sensory chain. The dominant role of the pulvinar and associated reticular thalamic nucleus as cortical coordinator is the common thread running through this step-by-step description. Synchronization mechanisms are analyzed in the context of visual perception, although the present considerations are not limited to this sense. A simple experiment is described, with the aim of assessing the validity of the elements developed here. A first set of results is provided, together with a proposed method to go further in this investigation.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"20"},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信