{"title":"解读人工智能模型:关于 LIME 和 SHAP 在阿尔茨海默病检测中应用的系统综述","authors":"Viswan Vimbi, Noushath Shaffi, Mufti Mahmud","doi":"10.1186/s40708-024-00222-1","DOIUrl":null,"url":null,"abstract":"Explainable artificial intelligence (XAI) has gained much interest in recent years for its ability to explain the complex decision-making process of machine learning (ML) and deep learning (DL) models. The Local Interpretable Model-agnostic Explanations (LIME) and Shaply Additive exPlanation (SHAP) frameworks have grown as popular interpretive tools for ML and DL models. This article provides a systematic review of the application of LIME and SHAP in interpreting the detection of Alzheimer’s disease (AD). Adhering to PRISMA and Kitchenham’s guidelines, we identified 23 relevant articles and investigated these frameworks’ prospective capabilities, benefits, and challenges in depth. The results emphasise XAI’s crucial role in strengthening the trustworthiness of AI-based AD predictions. This review aims to provide fundamental capabilities of LIME and SHAP XAI frameworks in enhancing fidelity within clinical decision support systems for AD prognosis.","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer’s disease detection\",\"authors\":\"Viswan Vimbi, Noushath Shaffi, Mufti Mahmud\",\"doi\":\"10.1186/s40708-024-00222-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explainable artificial intelligence (XAI) has gained much interest in recent years for its ability to explain the complex decision-making process of machine learning (ML) and deep learning (DL) models. The Local Interpretable Model-agnostic Explanations (LIME) and Shaply Additive exPlanation (SHAP) frameworks have grown as popular interpretive tools for ML and DL models. This article provides a systematic review of the application of LIME and SHAP in interpreting the detection of Alzheimer’s disease (AD). Adhering to PRISMA and Kitchenham’s guidelines, we identified 23 relevant articles and investigated these frameworks’ prospective capabilities, benefits, and challenges in depth. The results emphasise XAI’s crucial role in strengthening the trustworthiness of AI-based AD predictions. This review aims to provide fundamental capabilities of LIME and SHAP XAI frameworks in enhancing fidelity within clinical decision support systems for AD prognosis.\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00222-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00222-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer’s disease detection
Explainable artificial intelligence (XAI) has gained much interest in recent years for its ability to explain the complex decision-making process of machine learning (ML) and deep learning (DL) models. The Local Interpretable Model-agnostic Explanations (LIME) and Shaply Additive exPlanation (SHAP) frameworks have grown as popular interpretive tools for ML and DL models. This article provides a systematic review of the application of LIME and SHAP in interpreting the detection of Alzheimer’s disease (AD). Adhering to PRISMA and Kitchenham’s guidelines, we identified 23 relevant articles and investigated these frameworks’ prospective capabilities, benefits, and challenges in depth. The results emphasise XAI’s crucial role in strengthening the trustworthiness of AI-based AD predictions. This review aims to provide fundamental capabilities of LIME and SHAP XAI frameworks in enhancing fidelity within clinical decision support systems for AD prognosis.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing