HydrologyPub Date : 2024-05-22DOI: 10.3390/hydrology11060073
A. Susandi, Arief Darmawan, Albertus Sulaiman, Mouli De Rizka Dewantoro, A. Wijaya, Agung Riyadi, Agus Salim, Rafif Rahman Darmawan, A. F. Pratama
{"title":"Spatiotemporal Evaluation of Water Resources in Citarum Watershed during Weak La Nina and Weak El Nino","authors":"A. Susandi, Arief Darmawan, Albertus Sulaiman, Mouli De Rizka Dewantoro, A. Wijaya, Agung Riyadi, Agus Salim, Rafif Rahman Darmawan, A. F. Pratama","doi":"10.3390/hydrology11060073","DOIUrl":"https://doi.org/10.3390/hydrology11060073","url":null,"abstract":"This study investigates the dynamics of water resources in the Citarum watershed during periods of weak La Niña, normal, and weak El Niño conditions occurring sequentially. The Citarum watershed serves various purposes, being utilized not only by seven (7) districts and two (2) cities in West Java, Indonesia but also as a source of raw water for drinking in the City of Jakarta. Using a time-series analysis of surface water data, data-driven (machine learning) methods, and statistical analysis methods, spatiotemporal predictions of surface water have been made. The surface water time series data (2017–2021), obtained from in situ instruments, are used to assess water resources, predict groundwater recharge, and analyze seasonal patterns. The results indicate that surface water follows a seasonal pattern, particularly during the monsoon season, corresponding to the groundwater recharge pattern. In upstream areas, water resources exhibit an increasing trend during both weak La Nina and weak El Niño, except for Jatiluhur Dam, where a decline is observed in both seasons. Machine learning predictions suggest that water levels and groundwater recharge tend to decrease in both upstream and downstream areas.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141110808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-05-20DOI: 10.3390/hydrology11050072
Pascalina Matohlang Pilane, Henry Jordaan, Y. T. Bahta
{"title":"A Systematic Review of Social Sustainability Indicators for Water Use along the Agricultural Value Chain","authors":"Pascalina Matohlang Pilane, Henry Jordaan, Y. T. Bahta","doi":"10.3390/hydrology11050072","DOIUrl":"https://doi.org/10.3390/hydrology11050072","url":null,"abstract":"The concept of sustainable water use serves as an indicator of environmental, economic, and social pressure on freshwater resources globally; however, the social element of sustainability is not well researched within water-consumption studies. The objective of this paper is to consider the current state of the literature on social sustainability indicators for water use in agriculture, as well as to describe the social (people) element of sustainability and establish water use as an element of society. By combining viewpoints, systematic literature reviews address research topics with a strength that no single work can have. From 314 papers published between 2013 and 2023, 42 papers were eligible for the review. This work employed a mixed-methods approach that included a systematic review following the (PRISMA) framework, scientific mapping through VOSviewer software (version 1.6.19), thematic reviews, and a review of the grey literature retrieved from artificial intelligence and deep learning technologies. The findings indicate that social sustainability indicators are based on environmental indicators. There are no set standards for what to consider as a social indicator of water use or for how these indictors can be measured. Life-cycle assessment and water-footprint assessment frameworks have shown progress with indicators that capture the social value of water such as productivity-reducing externalities, equity, and jobs per cubic metre of water.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of GIS and Water-Quality Index for Preliminary Assessment of Groundwater Suitability for Human Consumption and Irrigation in Semi-Arid Region","authors":"Kaddour Benmarce, Karim Zighmi, R. Hadji, Younes Hamed, Matteo Gentilucci, Maurizio Barbieri, Gilberto Pambianchi","doi":"10.3390/hydrology11050071","DOIUrl":"https://doi.org/10.3390/hydrology11050071","url":null,"abstract":"The Setifian high-plains region, Northeast of Algeria, grapples with challenges in water resource management. As the water demand intensifies across a diverse range of sectors, assessing groundwater quality becomes indispensable. This article responds to the critical need for a thorough assessment of groundwater quality in the Wadi Boussellam sub-watershed. Employing a GIS-based method, we evaluate groundwater geochemistry by estimating the Water Quality Index (WQI), offering a comprehensive overview of water consumption. The analysis of groundwater samples reveals distinct facies, including calcic bicarbonate, calcic chloride, calcic sulfate, and magnesium sulfate, contributing to an enhanced understanding of the hydrochemical composition in the Setif region. Hydrochemical indices, specifically the WQI, Sodium Adsorption Ratio (SAR), and Na% are applied to assess groundwater suitability for various applications. The results indicate that most crops are generally suitable for irrigation, though they advise exercising caution with regard to human consumption. This study underscores the significance of regular monitoring to avert groundwater contamination and ensure sustainable use in the Setif region, providing insights that emphasize the ongoing necessity for efforts in water resource management and the preservation of this vital resource’s quality.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-03-30DOI: 10.3390/hydrology11040047
Christos Tzimopoulos, K. Papadopoulos, N. Samarinas, B. Papadopoulos, C. Evangelides
{"title":"Fuzzy Finite Elements Solution Describing Recession Flow in Unconfined Aquifers","authors":"Christos Tzimopoulos, K. Papadopoulos, N. Samarinas, B. Papadopoulos, C. Evangelides","doi":"10.3390/hydrology11040047","DOIUrl":"https://doi.org/10.3390/hydrology11040047","url":null,"abstract":"In this work, a novel fuzzy FEM (Finite Elements Method) numerical solution describing the recession flow in unconfined aquifers is proposed. In general, recession flow and drainage problems can be described by the nonlinear Boussinesq equation, while the introduced hydraulic parameters (Conductivity K and Porosity S) present significant uncertainties for various reasons (e.g., spatial distribution, human errors, etc.). Considering the general lack of in situ measurements for these parameters as well as the certain spatial variability that they present in field scales, a fuzzy approach was adopted to include the problem uncertainties and cover the disadvantage of ground truth missing data. The overall problem is encountered with a new approximate fuzzy FEM numerical solution, leading to a system of crisp boundary value problems. To prove the validity and efficiency of the new fuzzy FEM, a comparative analysis between the proposed approach and other well-known and tested approximations was carried out. According to the results, the proposed FEM numerical solution agrees with Karadinumerical method for the crisp case and is in close agreement with the original analytical solution proposed by Boussinesq in 1904 with the absolute reduced error to be 4.6‰. Additionally, the possibility theory is applied, enabling the engineers and designers of irrigation, drainage, and water resources projects to gain knowledge of hydraulic properties (e.g., water level, outflow volume) and make the right decisions for rational and productive engineering studies.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140363740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-03-29DOI: 10.3390/hydrology11040046
Alfonso Arrieta-Pastrana, Ó. E. Coronado-Hernández, V. S. Fuertes-Miquel
{"title":"Analysis of the Impact of Hydraulic Gates on a Stabilized Tidal Inlet Structure: Mathematical Model and Data Measurements","authors":"Alfonso Arrieta-Pastrana, Ó. E. Coronado-Hernández, V. S. Fuertes-Miquel","doi":"10.3390/hydrology11040046","DOIUrl":"https://doi.org/10.3390/hydrology11040046","url":null,"abstract":"Tidal inlet structures are engineering projects with associated benefits related to flood control, water quality enhancement, and coastal protection. This study analyzes the performance of hydraulic gates on a stabilized inlet in estuarine systems by developing a simplified hydraulic model that considers inlet and outlet water levels. The proposed model was applied to the stabilized tidal inlet structure in Cartagena de Indias, Colombia. This model offers a practical tool for engineers and designers operating estuarine systems. The analysis focuses on the coastal lagoon of Ciénaga de la Virgen. The proposed model was successfully calibrated using two water sensors, with extreme input and outlet flow rates of approximately 260 m3/s and 110 m3/s, respectively. The average daily output volume in the system is 3,361,000 m3, while the average daily input volume is 3,200,000 m3. Consequently, the manipulation of the opening gates results in a decrease in the estuarine water level, potentially by as much as 25 cm, which local authorities can use to make decisions to reduce extreme water levels during flooding events.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140367310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-03-28DOI: 10.3390/hydrology11040045
Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, M. Bolaños-González, Héctor Flores-Magdaleno, R. Ascencio-Hernández, Enrique I. Canales-Islas
{"title":"Evaluation of the Impact of Climate Change on the Water Balance of the Mixteco River Basin with the SWAT Model","authors":"Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, M. Bolaños-González, Héctor Flores-Magdaleno, R. Ascencio-Hernández, Enrique I. Canales-Islas","doi":"10.3390/hydrology11040045","DOIUrl":"https://doi.org/10.3390/hydrology11040045","url":null,"abstract":"Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological balance using the SWAT (Soil and Water Assessment Tool) hydrological model in the Mixteco River Basin (MRB), Oaxaca, Mexico. Temperature and precipitation were predicted with the projections of global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6); the bias was corrected using CMhyd software, and then the best performing GCM was selected for use in the SWAT model. According to the GCM MPI-ESM1-2-LR, precipitation might decrease by between 83.71 mm and 225.83 mm, while temperature might increase by between 2.57 °C and 4.77 °C, causing a greater atmospheric evaporation demand that might modify the hydrological balance of the MRB. Water yield might decrease by 47.40% and 61.01% under the climate scenarios SP245 and SSP585, respectively. Therefore, adaptation and mitigation measures are needed to offset the adverse impact of climate change in the MRB.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140369504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-03-26DOI: 10.3390/hydrology11040044
Tae Sung Cheong, Sangman Jeong
{"title":"Development of Green Disaster Management Toolkit to Achieve Carbon Neutrality Goals in Flood Risk Management","authors":"Tae Sung Cheong, Sangman Jeong","doi":"10.3390/hydrology11040044","DOIUrl":"https://doi.org/10.3390/hydrology11040044","url":null,"abstract":"Current flood risk management projects have been criticized for their high carbon emissions, raising the need for carbon emission reduction and carbon absorption efforts to mitigate environmental impacts and achieve carbon neutrality goals. The research develops a comprehensive green disaster risk management toolkit to calculate the carbon emissions and absorption quantitatively based on the unit volume of materials and processes employed in a flood risk management project. As a result of applying the developed toolkit to a about 22,300 small stream restoration projects in Korea, the total carbon emissions were estimated to be 1,158,840.7 tons of CO2, of which 89.4% of the total carbon emissions originated from concrete-related construction activities, such as cement and ready-mixed concrete pouring. As a result of evaluating the nationwide carbon absorption results of all small stream restoration projects, total absorption by 2030 is expected to be 3.0 to 10.2 times higher than carbon emissions. The comprehensive toolkits are expected to support the selection of customized processes, materials, and methods by providing a systematic approach to calculate and minimize carbon emissions, ultimately contributing to the achievement of carbon neutrality goals in flood risk management projects.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140378374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-03-25DOI: 10.3390/hydrology11040043
Felix Oteng Mensah, Clement Aga Alo, D. Ophori
{"title":"Hydroclimatic Trends and Streamflow Response to Recent Climate Change: An Application of Discrete Wavelet Transform and Hydrological Modeling in the Passaic River Basin, New Jersey, USA","authors":"Felix Oteng Mensah, Clement Aga Alo, D. Ophori","doi":"10.3390/hydrology11040043","DOIUrl":"https://doi.org/10.3390/hydrology11040043","url":null,"abstract":"The exigency of the current climate crisis demands a more comprehensive approach to addressing location-specific climate impacts. In the Passaic River Basin (PRB), two bodies of research—hydroclimatic trend detection and hydrological modeling—have been conducted with the aim of revealing the basin’s hydroclimate patterns as well as the hydrologic response to recent climate change. In a rather novel application of the wavelet transform tool, we sidelined the frequently used Mann–Kendal (MK) trend test, to identify the hidden monotonic trends in the inherently noisy hydroclimatic data. By this approach, the use of MK trend test directly on the raw data, whose results are almost always ambiguous and statistically insignificant in respect of precipitation data, for instance, no longer poses a challenge to the reliability of trend results. Our results showed that, whereas trends in temperature and precipitation are increasing in the PRB, streamflow trends are decreasing. Based on results from the hydrological modeling, streamflow is more sensitive to actual evapotranspiration (ET) than it is to precipitation. In periods spanning decades with sufficient water availability, energy governs actual evapotranspiration rates, rendering streamflow more sensitive to increases in precipitation. Conversely, during meteorologically stressed decades, water availability dictates actual evapotranspiration, consequently amplifying streamflow sensitivity to fluctuations in actual evapotranspiration. We found that the choice of baseline condition constitutes an important source of uncertainty in the sensitivities of streamflow to precipitation and evapotranspiration changes and should routinely be considered in any climate impact assessment.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140384756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-03-22DOI: 10.3390/hydrology11040042
A. Nelson, M. Maskey, B. Northup, D. Moriasi
{"title":"Calibrating Agro-Hydrological Model under Grazing Activities and Its Challenges and Implications","authors":"A. Nelson, M. Maskey, B. Northup, D. Moriasi","doi":"10.3390/hydrology11040042","DOIUrl":"https://doi.org/10.3390/hydrology11040042","url":null,"abstract":"Recently, the Agricultural Policy Extender (APEX) model was enhanced with a grazing module, and the modified grazing database, APEXgraze, recommends sustainable livestock farming practices. This study developed a combinatorial deterministic approach to calibrate runoff-related parameters, assuming a normal probability distribution for each parameter. Using the calibrated APEXgraze model, the impact of grazing operations on native prairie and cropland planted with winter wheat and oats in central Oklahoma was assessed. The existing performance criteria produced four solutions with very close values for calibrating runoff at the farm outlet, exhibiting equifinality. The calibrated results showed that runoff representations had coefficients of determination and Nash–Sutcliffe efficiencies >0.6 in both watersheds, irrespective of grazing operations. Because of non-unique solutions, the key parameter settings revealed different metrics yielding different response variables. Based on the least objective function value, the behavior of watersheds under different management and grazing intensities was compared. Model simulations indicated significantly reduced water yield, deep percolation, sediment yield, phosphorus and nitrogen loadings, and plant temperature stress after imposing grazing, particularly in native prairies, as compared to croplands. Differences in response variables were attributed to the intensity of tillage and grazing activities. As expected, grazing reduced forage yields in native prairies and increased crop grain yields in cropland. The use of a combinatorial deterministic approach to calibrating parameters offers several new research benefits when developing farm management models and quantifying sensitive parameters and uncertainties that recommend optimal farm management strategies under different climate and management conditions.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140218160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2024-03-21DOI: 10.3390/hydrology11030041
Benjamin Burrichter, Juliana Koltermann da Silva, Andre Niemann, Markus Quirmbach
{"title":"A Temporal Fusion Transformer Model to Forecast Overflow from Sewer Manholes during Pluvial Flash Flood Events","authors":"Benjamin Burrichter, Juliana Koltermann da Silva, Andre Niemann, Markus Quirmbach","doi":"10.3390/hydrology11030041","DOIUrl":"https://doi.org/10.3390/hydrology11030041","url":null,"abstract":"This study employs a temporal fusion transformer (TFT) for predicting overflow from sewer manholes during heavy rainfall events. The TFT utilised is capable of forecasting overflow hydrographs at the manhole level and was tested on a sewer network with 975 manholes. As part of the investigations, the TFT was compared to other deep learning architectures to evaluate its predictive performance. In addition to precipitation measurements and forecasts, the issue of how the additional consideration of measurements in the sewer network as model inputs impacts forecast accuracy was investigated. A varying number of sensors and different measurement signals were compared. The results indicate high performance for the TFT compared to other model architectures like a long short-term memory (LSTM) network or a dual-stage attention-based recurrent neural network (DA-RNN). Additionally, results suggest that considering a single measuring point at the outlet of the sewer network instead of an entire measuring network yields better forecasts. One possible explanation is the high correlation between measurements, which increases model and training complexity without adding much value.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140387611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}