{"title":"An Integrated Framework to Assess the Environmental and Economic Impact of Fertilizer Restrictions in a Nitrate-Contaminated Aquifer","authors":"I. Siarkos, Zisis Mallios, Pericles Latinopoulos","doi":"10.3390/hydrology11010008","DOIUrl":null,"url":null,"abstract":"Groundwater nitrate contamination caused by the excessive use of nitrogen-based fertilizers has been widely recognized as an issue of significant concern in numerous rural areas worldwide. To mitigate nitrate contamination, corrective management practices, such as regulations on fertilizer usage, should be implemented. However, these measures often entail economic consequences that impact farmers’ income, and thus should be properly assessed. Within this context, an integrated framework combining the environmental and economic assessment of fertilization restrictions through multi-criteria decision analysis is presented in an effort to efficiently manage groundwater nitrate contamination in rural areas. For this task, various scenarios involving reductions (10%, 20%, 30%, 40% and 50%) in fertilizer application were investigated, evaluated and ranked in order to determine the most suitable option. The environmental assessment considered occurrences of nitrates in groundwater, with a specific emphasis on nitrate concentrations in water-supply wells, as obtained by a nitrate fate and transport model, while the economic analysis focused on the losses experienced by farmers due to the reduced fertilizer usage. Our case-study implementation showed that a 30% reduction in fertilization is the most appropriate option for the area being studied, highlighting the importance of adopting such an approach when confronted with conflicting outcomes among alternatives.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology11010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater nitrate contamination caused by the excessive use of nitrogen-based fertilizers has been widely recognized as an issue of significant concern in numerous rural areas worldwide. To mitigate nitrate contamination, corrective management practices, such as regulations on fertilizer usage, should be implemented. However, these measures often entail economic consequences that impact farmers’ income, and thus should be properly assessed. Within this context, an integrated framework combining the environmental and economic assessment of fertilization restrictions through multi-criteria decision analysis is presented in an effort to efficiently manage groundwater nitrate contamination in rural areas. For this task, various scenarios involving reductions (10%, 20%, 30%, 40% and 50%) in fertilizer application were investigated, evaluated and ranked in order to determine the most suitable option. The environmental assessment considered occurrences of nitrates in groundwater, with a specific emphasis on nitrate concentrations in water-supply wells, as obtained by a nitrate fate and transport model, while the economic analysis focused on the losses experienced by farmers due to the reduced fertilizer usage. Our case-study implementation showed that a 30% reduction in fertilization is the most appropriate option for the area being studied, highlighting the importance of adopting such an approach when confronted with conflicting outcomes among alternatives.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.