M. Goodarzi, Mahnaz Heydaripour, Vahid Jamali, Maryam Sabaghzadeh, M. Niazkar
{"title":"调查气候变化影响下克曼平原未来气温和降水预测的不确定性","authors":"M. Goodarzi, Mahnaz Heydaripour, Vahid Jamali, Maryam Sabaghzadeh, M. Niazkar","doi":"10.3390/hydrology11010002","DOIUrl":null,"url":null,"abstract":"Climate change affects hydroclimatic variables, and assessing the uncertainty in future predictions is crucial. This study aims to explore variations in temperature and precipitation in the Kerman Plain under climate change impacts between 2023 and 2054. For this purpose, two climate models, MRI-ESM-2 and BCC-CSM2-MR, were used to simulate precipitation and temperature under two different scenarios. The Mann–Kendall test was employed to analyze the annual time series in the future period. The results indicated an increase in the average temperature of about 1.5 degrees Celsius based on both scenarios in the coming years. Furthermore, an average annual increase of 6.37 mm of precipitation was predicted under the SSP585 scenario. Meanwhile, under the SSP585 scenario, an increase was estimated using the MRI-ESM-2 model, and a decrease was predicted with the BCC-CSM2-MR model. The Mann–Kendall test revealed a downward trend in the BCC-CSM2-MR model under both scenarios and an upward trend in the MRI-ESM-2 model under both scenarios. The bootstrap method and the R-factor index were exploited in this study with a 95% confidence interval to estimate the uncertainty of the predicted data. The results demonstrated that the predicted precipitation is more uncertain than the temperature. Finally, it is postulated that the obtained results provide necessary information for water resource management under a changing climate in the study area.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Uncertainty of Future Predictions of Temperature and Precipitation in The Kerman Plain under Climate Change Impacts\",\"authors\":\"M. Goodarzi, Mahnaz Heydaripour, Vahid Jamali, Maryam Sabaghzadeh, M. Niazkar\",\"doi\":\"10.3390/hydrology11010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change affects hydroclimatic variables, and assessing the uncertainty in future predictions is crucial. This study aims to explore variations in temperature and precipitation in the Kerman Plain under climate change impacts between 2023 and 2054. For this purpose, two climate models, MRI-ESM-2 and BCC-CSM2-MR, were used to simulate precipitation and temperature under two different scenarios. The Mann–Kendall test was employed to analyze the annual time series in the future period. The results indicated an increase in the average temperature of about 1.5 degrees Celsius based on both scenarios in the coming years. Furthermore, an average annual increase of 6.37 mm of precipitation was predicted under the SSP585 scenario. Meanwhile, under the SSP585 scenario, an increase was estimated using the MRI-ESM-2 model, and a decrease was predicted with the BCC-CSM2-MR model. The Mann–Kendall test revealed a downward trend in the BCC-CSM2-MR model under both scenarios and an upward trend in the MRI-ESM-2 model under both scenarios. The bootstrap method and the R-factor index were exploited in this study with a 95% confidence interval to estimate the uncertainty of the predicted data. The results demonstrated that the predicted precipitation is more uncertain than the temperature. Finally, it is postulated that the obtained results provide necessary information for water resource management under a changing climate in the study area.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology11010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology11010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Investigating Uncertainty of Future Predictions of Temperature and Precipitation in The Kerman Plain under Climate Change Impacts
Climate change affects hydroclimatic variables, and assessing the uncertainty in future predictions is crucial. This study aims to explore variations in temperature and precipitation in the Kerman Plain under climate change impacts between 2023 and 2054. For this purpose, two climate models, MRI-ESM-2 and BCC-CSM2-MR, were used to simulate precipitation and temperature under two different scenarios. The Mann–Kendall test was employed to analyze the annual time series in the future period. The results indicated an increase in the average temperature of about 1.5 degrees Celsius based on both scenarios in the coming years. Furthermore, an average annual increase of 6.37 mm of precipitation was predicted under the SSP585 scenario. Meanwhile, under the SSP585 scenario, an increase was estimated using the MRI-ESM-2 model, and a decrease was predicted with the BCC-CSM2-MR model. The Mann–Kendall test revealed a downward trend in the BCC-CSM2-MR model under both scenarios and an upward trend in the MRI-ESM-2 model under both scenarios. The bootstrap method and the R-factor index were exploited in this study with a 95% confidence interval to estimate the uncertainty of the predicted data. The results demonstrated that the predicted precipitation is more uncertain than the temperature. Finally, it is postulated that the obtained results provide necessary information for water resource management under a changing climate in the study area.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.