HydrologyPub Date : 2023-07-31DOI: 10.3390/hydrology10080160
Taylor Joyal, Alexander K. Fremier, Jan Boll
{"title":"Modeled Forest Conversion Influences Humid Tropical Watershed Hydrology More than Projected Climate Change","authors":"Taylor Joyal, Alexander K. Fremier, Jan Boll","doi":"10.3390/hydrology10080160","DOIUrl":"https://doi.org/10.3390/hydrology10080160","url":null,"abstract":"In the humid tropics, forest conversion and climate change threaten the hydrological function and stationarity of watersheds, particularly in steep terrain. As climate change intensifies, shifting precipitation patterns and expanding agricultural and pastoral land use may effectively reduce the resilience of headwater catchments. Compounding this problem is the limited long-term monitoring in developing countries for planning in an uncertain future. In this study, we asked which change, climate or land use, more greatly affects stream discharge in humid tropical mountain watersheds? To answer this question, we used the process-based, spatially distributed Soil Moisture Routing model. After first evaluating model performance (Ns = 0.73), we conducted a global sensitivity analysis to identify the model parameters that most strongly influence simulated watershed discharge. In particular, peak flows are most influenced by input model parameters that represent shallow subsurface soil pathways and saturation-excess runoff while low flows are most sensitive to macropore hydraulic conductivity, soil depth and porosity parameters. We then simulated a range of land use and climate scenarios in three mountain watersheds of central Costa Rica. Our results show that deforestation influences streamflow more than altered precipitation and temperature patterns through changes in first-order hydrologic hillslope processes. However, forest conversion coupled with intensifying precipitation events amplifies hydrological extremes, reducing the hydrological resilience to predicted climate shifts in mountain watersheds of the humid tropics. This finding suggests that reforestation can help mitigate the effects of climate change on streamflow dynamics in the tropics including impacts to water availability, flood pulses, channel geomorphology and aquatic habitat associated with altered flow regimes.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135155488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2023-07-30DOI: 10.3390/hydrology10080159
C. Anghel, S. Stanca, Cornel Ilinca
{"title":"Extreme Events Analysis Using LH-Moments Method and Quantile Function Family","authors":"C. Anghel, S. Stanca, Cornel Ilinca","doi":"10.3390/hydrology10080159","DOIUrl":"https://doi.org/10.3390/hydrology10080159","url":null,"abstract":"A direct way to estimate the likelihood and magnitude of extreme events is frequency analysis. This analysis is based on historical data and assumptions of stationarity, and is carried out with the help of probability distributions and different methods of estimating their parameters. Thus, this article presents all the relations necessary to estimate the parameters with the LH-moments method for the family of distributions defined only by the quantile function, namely, the Wakeby distribution of 4 and 5 parameters, the Lambda distribution of 4 and 5 parameters, and the Davis distribution. The LH-moments method is a method commonly used in flood frequency analysis, and it uses the annual series of maximum flows. The frequency characteristics of the two analyzed methods, which are both involved in expressing the distributions used in the first two linear moments, as well as in determining the confidence interval, are presented. The performances of the analyzed distributions and the two presented methods are verified in the following maximum flows, with the Bahna river used as a case study. The results are presented in comparison with the L-moments method. Following the results obtained, the Wakeby and Lambda distributions have the best performances, and the LH-skewness and LH-kurtosis statistical indicators best model the indicators’ values of the sample (0.5769, 0.3781, 0.548 and 0.3451). Similar to the L-moments method, this represents the main selection criterion of the best fit distribution.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":"356 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41315497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2023-07-28DOI: 10.3390/hydrology10080158
K. Wienhold, Dongfeng Li, Wenzhao Li, Zheng N. Fang
{"title":"Flood Inundation and Depth Mapping Using Unmanned Aerial Vehicles Combined with High-Resolution Multispectral Imagery","authors":"K. Wienhold, Dongfeng Li, Wenzhao Li, Zheng N. Fang","doi":"10.3390/hydrology10080158","DOIUrl":"https://doi.org/10.3390/hydrology10080158","url":null,"abstract":"The identification of flood hazards during emerging public safety crises such as hurricanes or flash floods is an invaluable tool for first responders and managers yet remains out of reach in any comprehensive sense when using traditional remote-sensing methods, due to cloud cover and other data-sourcing restrictions. While many remote-sensing techniques exist for floodwater identification and extraction, few studies demonstrate an up-to-day understanding with better techniques in isolating the spectral properties of floodwaters from collected data, which vary for each event. This study introduces a novel method for delineating near-real-time inundation flood extent and depth mapping for storm events, using an inexpensive unmanned aerial vehicle (UAV)-based multispectral remote-sensing platform, which was designed to be applicable for urban environments, under a wide range of atmospheric conditions. The methodology is demonstrated using an actual flooding-event—Hurricane Zeta during the 2020 Atlantic hurricane season. Referred to as the UAV and Floodwater Inundation and Depth Mapper (FIDM), the methodology consists of three major components, including aerial data collection, processing, and flood inundation (water surface extent) and depth mapping. The model results for inundation and depth were compared to a validation dataset and ground-truthing data, respectively. The results suggest that UAV-FIDM is able to predict inundation with a total error (sum of omission and commission errors) of 15.8% and produce flooding depth estimates that are accurate enough to be actionable to determine road closures for a real event.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44936634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2023-07-26DOI: 10.3390/hydrology10080157
H. Darabi, A. Danandeh Mehr, Gülşen Kum, M. Sönmez, C. Dumitrache, Khadija Diani, A. Çelebi, Ali Torabi Haghighi
{"title":"Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices","authors":"H. Darabi, A. Danandeh Mehr, Gülşen Kum, M. Sönmez, C. Dumitrache, Khadija Diani, A. Çelebi, Ali Torabi Haghighi","doi":"10.3390/hydrology10080157","DOIUrl":"https://doi.org/10.3390/hydrology10080157","url":null,"abstract":"This study examined the spatiotemporal climate variability over the Ceyhan River basin in Southern Anatolia, Türkiye using historical rainfall and temperature observations recorded at 15 meteorology stations. Various statistical and geostatistical techniques were employed to determine the significance of trends for each climatic variable in the whole basin and its three sub-regions (northern, central, and southern regions). The results revealed that the recent years in the basin were generally warmer compared with previous years, with a temperature increase of approximately 4 °C. The standardized temperature index analysis indicated a shift towards hotter periods after 2005, while the coldest periods were observed in the early 1990s. The spatial distribution of temperature showed non-uniform patterns throughout the basin. The first decade of the study period (1975–1984) was characterized by relatively cold temperatures, followed by a transition period from cold to hot between 1985 and 2004, and a hotter period in the last decade (2005–2014). The rainfall analysis indicated a decreasing trend in annual rainfall, particularly in the northern and central regions of the basin. However, the southern region showed an increasing trend in annual rainfall during the study period. The spatial distribution of rainfall exhibited considerable variability across the basin, with different regions experiencing distinct patterns. The standardized precipitation index analysis revealed the occurrence of multiple drought events throughout the study period. The most severe and prolonged droughts were observed in the years 1992–1996 and 2007–2010. These drought events had significant impacts on water availability and agricultural productivity in the basin.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47571056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2023-07-24DOI: 10.11648/j.hyd.20231102.12
Inayat Ur Rahman, Cui Yian, S. Hussain, Akbar Ali, Mustafa Qasim, Idrees Khan, Musa Khan
{"title":"Geophysical Prospecting of Aquifer Hydrogeological Properties: Implications for Groundwater Resource Management in Parts of Indus Plain, Pakistan","authors":"Inayat Ur Rahman, Cui Yian, S. Hussain, Akbar Ali, Mustafa Qasim, Idrees Khan, Musa Khan","doi":"10.11648/j.hyd.20231102.12","DOIUrl":"https://doi.org/10.11648/j.hyd.20231102.12","url":null,"abstract":"","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46616627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2023-07-23DOI: 10.3390/hydrology10070156
C. Humphrey, N. Lyons, Ryan Bond, E. Bean, M. O’Driscoll, Avian V. White
{"title":"Assessment and Mitigation of Fecal Bacteria Exports from a Coastal North Carolina Watershed","authors":"C. Humphrey, N. Lyons, Ryan Bond, E. Bean, M. O’Driscoll, Avian V. White","doi":"10.3390/hydrology10070156","DOIUrl":"https://doi.org/10.3390/hydrology10070156","url":null,"abstract":"Urban runoff from the Boat House Creek watershed was suspected as a main delivery mechanism for fecal indicator bacteria (FIB) to the lower White Oak River Estuary in coastal North Carolina, but the dominant source of waste (animal or human) was unknown. Water samples from eight locations within the watershed were collected approximately monthly for two years for enumeration of Escherichia coli (E. coli), enterococci, physicochemical characterization, and microbial source tracking analyses. Concentrations and loadings of E. coli and enterococci were typically elevated during stormflow relative to baseflow conditions, and most samples (66% of enterococci and 75% of E. coli) exceeded the US EPA statistical threshold values. Concentrations of FIB were significantly higher during warm relative to colder months. Human sources of FIB were not observed in the samples, and FIB concentrations increased in locations with wider buffers, thus wildlife was the suspected main FIB source. Stormwater control measures including a rain garden, water control structures, swale modifications, and check dams were implemented to reduce runoff and FIB loadings to the estuary. Stormflow reductions of >5700 m3 year−1 are estimated from the installation of the practices. More work will be needed to improve/maintain water quality as watershed development continues.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41319126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2023-07-22DOI: 10.3390/hydrology10070154
N. Sriwongsitanon, Chanphit Kaprom, Kamonpat Tantisuvanichkul, Nattakorn Prasertthonggorn, Watchara Suiadee, W. Bastiaanssen, J. A. Williams
{"title":"The Combined Power of Double Mass Curves and Bias Correction for the Maximisation of the Accuracy of an Ensemble Satellite-Based Precipitation Estimate Product","authors":"N. Sriwongsitanon, Chanphit Kaprom, Kamonpat Tantisuvanichkul, Nattakorn Prasertthonggorn, Watchara Suiadee, W. Bastiaanssen, J. A. Williams","doi":"10.3390/hydrology10070154","DOIUrl":"https://doi.org/10.3390/hydrology10070154","url":null,"abstract":"Precise estimation of the spatial and temporal characteristics of rainfall is essential for producing the reliable catchment response needed for proper management of water resources. However, in most parts of the world, gauged rainfall stations are sparsely distributed and fail to properly capture the spatial variability of rainfall. Furthermore, the gauged rainfall data can sometimes be of short length or require validation. Following this, we present a procedure that enhances the trustworthiness of gauged rainfall data and the accuracy of the rainfall estimations of five satellite-based precipitation estimate (SPE) products by validating them using the 1779 gauged rainfall stations across Thailand. The five SPE products considered include CMORPH-BLD; TRMM-3B42; CHIRPS; CHIRPS-PL; and TRMM-3B42RT. Prior to validation, the gauged rainfall dataset was verified using double mass curve (DMC) analysis to eliminate questionable and inconsistent readings. This led to the improvement of the Nash–Sutcliffe Efficiency (NSE) between the station of interest and its surroundings by 13.9% (0.758–0.863), together with an average 11.8% increase with SPE products, whilst dropping only 7% of questionable dataset. Three different bias correction (BC) procedures were applied to correct SPE products using gauge-based gridded rainfall (GGR). Once DMC and BC procedures were implemented together, the performance of the SPE products was found to increase significantly. Finally, the application of the ensemble weighted average of the three best-performing bias-corrected SPE products (Bias-CMORPH-BLD, Bias-TRMM-3B42, and Bias-CHIRPS) further enhanced the NSE to 0.907 and 0.880 in calibration and validation time periods, respectively. The proposed DMC-based correction SPE and the weighting procedure of multiple SPE products allows for an easy means of obtaining daily rainfall in remote locations with sufficient accuracy.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44185033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2023-07-22DOI: 10.3390/hydrology10070155
S. McCord, G. Reller, Jon Miller, Kim Pingree
{"title":"Application of a Novel Amendment for the Remediation of Mercury Mine Sites with Hydrologic Controls","authors":"S. McCord, G. Reller, Jon Miller, Kim Pingree","doi":"10.3390/hydrology10070155","DOIUrl":"https://doi.org/10.3390/hydrology10070155","url":null,"abstract":"MercLokTM P-640 (MercLok) is a proprietary product developed by Albemarle as a mercury (Hg) treatment technology. MercLok captures mercury and sequesters it for a long period under ambient environmental conditions. For this project, MercLok was applied to Hg-contaminated calcines at two abandoned Hg mine sites in northern California to evaluate its efficacy in rendering such contaminated materials less hazardous and thereby reducing remediation project costs. The first application (Site 1) consisted of two calcines amended with MercLok in isolated reactor buckets under two hydrologic remediation approaches (“repository cap” and “reactive barrier”) while exposed to ambient environmental conditions. Non-amended and amended calcines and their leachates were analyzed for Hg content and related conditions during a five-month study period, demonstrating >95% reduction in leachable Hg. The second application (Site 2) involved full-scale site remediation with the application of both approaches and additional hydrologic controls to minimize run-on, erosion, and runoff. Confirmation sampling and subsequent observations indicate that the amendments and hydrologic controls effectively stabilized the site and minimized Hg releases. These application projects demonstrate the efficacy of MercLok as a component of hydrologic controls for treating Hg-contaminated material to achieve long-term mine site remediation objectives.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47051271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2023-07-20DOI: 10.3390/hydrology10070152
M. Grimalt-Gelabert, Joan Rosselló-Geli
{"title":"Flood Peaks and Geomorphic Processes in an Ephemeral Mediterranean Stream: Torrent de Sant Jordi (Pollença, Mallorca)","authors":"M. Grimalt-Gelabert, Joan Rosselló-Geli","doi":"10.3390/hydrology10070152","DOIUrl":"https://doi.org/10.3390/hydrology10070152","url":null,"abstract":"The research presented herein studies three episodes of flooding that affected the ephemeral basin of the Sant Jordi stream in northwestern Mallorca. These events are considered common since they do not reach the proportions in terms of the flow rates of other cases that have occurred in Mallorca, but they are nevertheless important due to the impact they have on human activity and also due to the morphological changes caused in the basin itself. On the one hand, the development of the field work to characterize and calculate the peak flows is presented, and on the other hand, the geomorphic changes caused by the water and the materials carried away are explained. The results allow us to identify a type of Mediterranean flood, which happens on a regular basis, but which does not stand out for its flows or for its major socio-economic impacts but still has an effect on the natural and anthropic environment. This information can be valuable for local and regional authorities as well as for the public to avoid risk situations and prevent impacts on public and private property caused by future events.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46244434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrologyPub Date : 2023-07-20DOI: 10.3390/hydrology10070153
S. Justino, C. Calheiros, P. Castro, David Gonçalves
{"title":"Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment in the Hospitality Industry: A Review","authors":"S. Justino, C. Calheiros, P. Castro, David Gonçalves","doi":"10.3390/hydrology10070153","DOIUrl":"https://doi.org/10.3390/hydrology10070153","url":null,"abstract":"The hospitality industry is increasing its awareness of how the integration of nature-based solutions can decrease its environmental impact while maintaining or increasing the service level of the sector. Constructed wetlands (CWs) constitute a promising sustainable solution for proper in situ domestic wastewater treatment. This literature review elucidates the status of CWs implementation in the hospitality industry to help foster the exchange of experiences in the field and deliver examples of approaches in different contexts to support future applications of this technology. Most of the studies reported in the literature were conducted in Europe, but studies emanating from Asia and South America are also available. The design of CWs, the horizontal and vertical subsurface flow CWs (HSFCW, VSFCW), and hybrid systems have been reported. The average removal efficiencies of the systems ranged from 83 to 95% for biochemical oxygen demand, 74 to 94% for chemical oxygen demand, 78 to 96% for total suspended solids, 75 to 85% for ammonium, 44 to 85% for ammonia, 50 to 73% for nitrate, 57 to 88% for total Kjeldahl nitrogen, 51 to 58% total nitrogen, and 66 to 99% for total phosphorus. The majority of the systems were implemented as decentralized treatment solutions using HSFCWs, with the second most common design being the hybrid CW systems in order to reduce area requirements, increase treatment efficiency, and prevent clogging. Overall, CWs are a promising sustainable solution which may support access to adequate sanitation worldwide as well as safe wastewater recycling and reuse, leading to more sustainable tourist destinations.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44155588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}