结合高分辨率多光谱图像的无人机洪水淹没与深度测绘

IF 3.1 Q2 WATER RESOURCES
K. Wienhold, Dongfeng Li, Wenzhao Li, Zheng N. Fang
{"title":"结合高分辨率多光谱图像的无人机洪水淹没与深度测绘","authors":"K. Wienhold, Dongfeng Li, Wenzhao Li, Zheng N. Fang","doi":"10.3390/hydrology10080158","DOIUrl":null,"url":null,"abstract":"The identification of flood hazards during emerging public safety crises such as hurricanes or flash floods is an invaluable tool for first responders and managers yet remains out of reach in any comprehensive sense when using traditional remote-sensing methods, due to cloud cover and other data-sourcing restrictions. While many remote-sensing techniques exist for floodwater identification and extraction, few studies demonstrate an up-to-day understanding with better techniques in isolating the spectral properties of floodwaters from collected data, which vary for each event. This study introduces a novel method for delineating near-real-time inundation flood extent and depth mapping for storm events, using an inexpensive unmanned aerial vehicle (UAV)-based multispectral remote-sensing platform, which was designed to be applicable for urban environments, under a wide range of atmospheric conditions. The methodology is demonstrated using an actual flooding-event—Hurricane Zeta during the 2020 Atlantic hurricane season. Referred to as the UAV and Floodwater Inundation and Depth Mapper (FIDM), the methodology consists of three major components, including aerial data collection, processing, and flood inundation (water surface extent) and depth mapping. The model results for inundation and depth were compared to a validation dataset and ground-truthing data, respectively. The results suggest that UAV-FIDM is able to predict inundation with a total error (sum of omission and commission errors) of 15.8% and produce flooding depth estimates that are accurate enough to be actionable to determine road closures for a real event.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flood Inundation and Depth Mapping Using Unmanned Aerial Vehicles Combined with High-Resolution Multispectral Imagery\",\"authors\":\"K. Wienhold, Dongfeng Li, Wenzhao Li, Zheng N. Fang\",\"doi\":\"10.3390/hydrology10080158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of flood hazards during emerging public safety crises such as hurricanes or flash floods is an invaluable tool for first responders and managers yet remains out of reach in any comprehensive sense when using traditional remote-sensing methods, due to cloud cover and other data-sourcing restrictions. While many remote-sensing techniques exist for floodwater identification and extraction, few studies demonstrate an up-to-day understanding with better techniques in isolating the spectral properties of floodwaters from collected data, which vary for each event. This study introduces a novel method for delineating near-real-time inundation flood extent and depth mapping for storm events, using an inexpensive unmanned aerial vehicle (UAV)-based multispectral remote-sensing platform, which was designed to be applicable for urban environments, under a wide range of atmospheric conditions. The methodology is demonstrated using an actual flooding-event—Hurricane Zeta during the 2020 Atlantic hurricane season. Referred to as the UAV and Floodwater Inundation and Depth Mapper (FIDM), the methodology consists of three major components, including aerial data collection, processing, and flood inundation (water surface extent) and depth mapping. The model results for inundation and depth were compared to a validation dataset and ground-truthing data, respectively. The results suggest that UAV-FIDM is able to predict inundation with a total error (sum of omission and commission errors) of 15.8% and produce flooding depth estimates that are accurate enough to be actionable to determine road closures for a real event.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10080158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10080158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

在飓风或山洪等新出现的公共安全危机期间识别洪水危害是急救人员和管理人员的宝贵工具,但由于云层覆盖和其他数据来源限制,在使用传统遥感方法时,在任何全面意义上都是遥不可及的。虽然存在许多用于洪水识别和提取的遥感技术,但很少有研究表明,在从收集的数据中分离洪水的光谱特性方面,有更好的技术可以达到最新的理解,这些数据因每次事件而异。这项研究介绍了一种新的方法,用于绘制风暴事件的近实时淹没洪水范围和深度图,该方法使用了一种基于廉价无人机的多光谱遥感平台,该平台旨在适用于各种大气条件下的城市环境。该方法是通过一个实际的洪水事件——2020年大西洋飓风季的飓风泽塔来证明的。该方法被称为无人机和洪水淹没和深度测绘仪(FIDM),由三个主要组成部分组成,包括航空数据收集、处理以及洪水淹没(水面范围)和深度测绘。将淹没和深度的模型结果分别与验证数据集和地面实况数据进行比较。结果表明,UAV-FIDM能够预测洪水,总误差(遗漏和委托误差之和)为15.8%,并产生足够准确的洪水深度估计值,可用于确定实际事件的道路封闭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flood Inundation and Depth Mapping Using Unmanned Aerial Vehicles Combined with High-Resolution Multispectral Imagery
The identification of flood hazards during emerging public safety crises such as hurricanes or flash floods is an invaluable tool for first responders and managers yet remains out of reach in any comprehensive sense when using traditional remote-sensing methods, due to cloud cover and other data-sourcing restrictions. While many remote-sensing techniques exist for floodwater identification and extraction, few studies demonstrate an up-to-day understanding with better techniques in isolating the spectral properties of floodwaters from collected data, which vary for each event. This study introduces a novel method for delineating near-real-time inundation flood extent and depth mapping for storm events, using an inexpensive unmanned aerial vehicle (UAV)-based multispectral remote-sensing platform, which was designed to be applicable for urban environments, under a wide range of atmospheric conditions. The methodology is demonstrated using an actual flooding-event—Hurricane Zeta during the 2020 Atlantic hurricane season. Referred to as the UAV and Floodwater Inundation and Depth Mapper (FIDM), the methodology consists of three major components, including aerial data collection, processing, and flood inundation (water surface extent) and depth mapping. The model results for inundation and depth were compared to a validation dataset and ground-truthing data, respectively. The results suggest that UAV-FIDM is able to predict inundation with a total error (sum of omission and commission errors) of 15.8% and produce flooding depth estimates that are accurate enough to be actionable to determine road closures for a real event.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology
Hydrology Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍: Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信