{"title":"Extreme Events Analysis Using LH-Moments Method and Quantile Function Family","authors":"C. Anghel, S. Stanca, Cornel Ilinca","doi":"10.3390/hydrology10080159","DOIUrl":null,"url":null,"abstract":"A direct way to estimate the likelihood and magnitude of extreme events is frequency analysis. This analysis is based on historical data and assumptions of stationarity, and is carried out with the help of probability distributions and different methods of estimating their parameters. Thus, this article presents all the relations necessary to estimate the parameters with the LH-moments method for the family of distributions defined only by the quantile function, namely, the Wakeby distribution of 4 and 5 parameters, the Lambda distribution of 4 and 5 parameters, and the Davis distribution. The LH-moments method is a method commonly used in flood frequency analysis, and it uses the annual series of maximum flows. The frequency characteristics of the two analyzed methods, which are both involved in expressing the distributions used in the first two linear moments, as well as in determining the confidence interval, are presented. The performances of the analyzed distributions and the two presented methods are verified in the following maximum flows, with the Bahna river used as a case study. The results are presented in comparison with the L-moments method. Following the results obtained, the Wakeby and Lambda distributions have the best performances, and the LH-skewness and LH-kurtosis statistical indicators best model the indicators’ values of the sample (0.5769, 0.3781, 0.548 and 0.3451). Similar to the L-moments method, this represents the main selection criterion of the best fit distribution.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":"356 ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10080159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
A direct way to estimate the likelihood and magnitude of extreme events is frequency analysis. This analysis is based on historical data and assumptions of stationarity, and is carried out with the help of probability distributions and different methods of estimating their parameters. Thus, this article presents all the relations necessary to estimate the parameters with the LH-moments method for the family of distributions defined only by the quantile function, namely, the Wakeby distribution of 4 and 5 parameters, the Lambda distribution of 4 and 5 parameters, and the Davis distribution. The LH-moments method is a method commonly used in flood frequency analysis, and it uses the annual series of maximum flows. The frequency characteristics of the two analyzed methods, which are both involved in expressing the distributions used in the first two linear moments, as well as in determining the confidence interval, are presented. The performances of the analyzed distributions and the two presented methods are verified in the following maximum flows, with the Bahna river used as a case study. The results are presented in comparison with the L-moments method. Following the results obtained, the Wakeby and Lambda distributions have the best performances, and the LH-skewness and LH-kurtosis statistical indicators best model the indicators’ values of the sample (0.5769, 0.3781, 0.548 and 0.3451). Similar to the L-moments method, this represents the main selection criterion of the best fit distribution.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.