Felipe Duque, Greg O’Donnell, Yanli Liu, Mingming Song, E. O'Connell
{"title":"Evaluating the Benefits of Flood Warnings in the Management of an Urban Flood-Prone Polder Area","authors":"Felipe Duque, Greg O’Donnell, Yanli Liu, Mingming Song, E. O'Connell","doi":"10.3390/hydrology10120238","DOIUrl":null,"url":null,"abstract":"Polders are low-lying areas located in deltas, surrounded by embankments to prevent flooding (river or tidal floods). They rely on pumping systems to remove water from the inner rivers (artificial rivers inside the polder area) to the outer rivers, especially during storms. Urbanized polders are especially vulnerable to pluvial flooding if the drainage, storage, and pumping capacity of the polder is inadequate. In this paper, a Monte Carlo (MC) framework is proposed to evaluate the benefits of rainfall threshold-based flood warnings when mitigating pluvial flooding in an urban flood-prone polder area based on 24 h forecasts. The framework computes metrics that give the potential waterlogging duration, maximum inundated area, and pump operation costs by considering the full range of potential storms. The benefits of flood warnings are evaluated by comparing the values of these metrics across different scenarios: the no-warning, perfect, deterministic, and probabilistic forecast scenarios. Probabilistic forecasts are represented using the concept of “predictive uncertainty” (PU). A polder area located in Nanjing was chosen for the case study. The results show a trade-off between the metrics that represent the waterlogging and the pumping costs, and that probabilistic forecasts of rainfall can considerably enhance these metrics. The results can be used to design a rainfall threshold-based flood early warning system (FEWS) for a polder area and/or evaluate its benefits.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":"33 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10120238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polders are low-lying areas located in deltas, surrounded by embankments to prevent flooding (river or tidal floods). They rely on pumping systems to remove water from the inner rivers (artificial rivers inside the polder area) to the outer rivers, especially during storms. Urbanized polders are especially vulnerable to pluvial flooding if the drainage, storage, and pumping capacity of the polder is inadequate. In this paper, a Monte Carlo (MC) framework is proposed to evaluate the benefits of rainfall threshold-based flood warnings when mitigating pluvial flooding in an urban flood-prone polder area based on 24 h forecasts. The framework computes metrics that give the potential waterlogging duration, maximum inundated area, and pump operation costs by considering the full range of potential storms. The benefits of flood warnings are evaluated by comparing the values of these metrics across different scenarios: the no-warning, perfect, deterministic, and probabilistic forecast scenarios. Probabilistic forecasts are represented using the concept of “predictive uncertainty” (PU). A polder area located in Nanjing was chosen for the case study. The results show a trade-off between the metrics that represent the waterlogging and the pumping costs, and that probabilistic forecasts of rainfall can considerably enhance these metrics. The results can be used to design a rainfall threshold-based flood early warning system (FEWS) for a polder area and/or evaluate its benefits.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.