Journal of Algebra Combinatorics Discrete Structures and Applications最新文献

筛选
英文 中文
Non-existence of some 4-dimensional Griesmer codes over finite fields 有限域上某些4维Griesmer码的不存在性
Journal of Algebra Combinatorics Discrete Structures and Applications Pub Date : 2018-05-28 DOI: 10.13069/jacodesmath.427968
Kazuki Kumegawa, T. Maruta
{"title":"Non-existence of some 4-dimensional Griesmer codes over finite fields","authors":"Kazuki Kumegawa, T. Maruta","doi":"10.13069/jacodesmath.427968","DOIUrl":"https://doi.org/10.13069/jacodesmath.427968","url":null,"abstract":"We prove the non--existence of $[g_q(4,d),4,d]_q$ codes for $d=2q^3-rq^2-2q+1$ for $3 le r le (q+1)/2$, $q ge 5$; $d=2q^3-3q^2-3q+1$ for $q ge 9$; $d=2q^3-4q^2-3q+1$ for $q ge 9$; and $d=q^3-q^2-rq-2$ with $r=4, 5$ or $6$ for $q ge 9$, where $g_q(4,d)=sum_{i=0}^{3} leftlceil d/q^i rightrceil$. This yields that $n_q(4,d) = g_q(4,d)+1$ for $2q^3-3q^2-3q+1 le d le 2q^3-3q^2$, $2q^3-5q^2-2q+1 le d le 2q^3-5q^2$ and $q^3-q^2-rq-2 le d le q^3-q^2-rq$ with $4 le r le 6$ for $q ge 9$ and that $n_q(4,d) ge g_q(4,d)+1$ for $2q^3-rq^2-2q+1 le d le 2q^3-rq^2-q$ for $3 le r le (q+1)/2$, $q ge 5$ and $2q^3-4q^2-3q+1 le d le 2q^3-4q^2-2q$ for $q ge 9$, where $n_q(4,d)$ denotes the minimum length $n$ for which an $[n,4,d]_q$ code exists.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47232360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
$mathbb{Z}_{q}(mathbb{Z}_{q}+umathbb{Z}_{q})-$ linear skew constacyclic codes $mathbb{Z}_{q} (mathbb{Z}_{q} +umathbb{Z}_{q} )-$线性斜恒循环码
Journal of Algebra Combinatorics Discrete Structures and Applications Pub Date : 2018-03-25 DOI: 10.13069/jacodesmath.671815
A. Melakhessou, N. Aydin, K. Guenda
{"title":"$mathbb{Z}_{q}(mathbb{Z}_{q}+umathbb{Z}_{q})-$ linear skew constacyclic codes","authors":"A. Melakhessou, N. Aydin, K. Guenda","doi":"10.13069/jacodesmath.671815","DOIUrl":"https://doi.org/10.13069/jacodesmath.671815","url":null,"abstract":"In this paper, we study skew constacyclic codes over the ring $mathbb{Z}_{q}R$ where $R=mathbb{Z}_{q}+umathbb{Z}_{q}$, $q=p^{s}$ for a prime $p$ and $u^{2}=0$. We give the definition of these codes as subsets of the ring $mathbb{Z}_{q}^{alpha}R^{beta}$. Some structural properties of the skew polynomial ring $ R[x,theta]$ are discussed, where $ theta$ is an automorphism of $R$. We describe the generator polynomials of skew constacyclic codes over $ R $ and $mathbb{Z}_{q}R$. Using Gray images of skew constacyclic codes over $mathbb{Z}_{q}R$ we obtained some new linear codes over $mathbb{Z}_4$. Further, we have generalized these codes to double skew constacyclic codes over $mathbb{Z}_{q}R$.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47575885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
One–generator quasi–abelian codes revisited 重新审视单生成器拟阿贝尔码
Journal of Algebra Combinatorics Discrete Structures and Applications Pub Date : 2016-02-07 DOI: 10.13069/jacodesmath.09585
Somphong Jitman, P. Udomkavanich
{"title":"One–generator quasi–abelian codes revisited","authors":"Somphong Jitman, P. Udomkavanich","doi":"10.13069/jacodesmath.09585","DOIUrl":"https://doi.org/10.13069/jacodesmath.09585","url":null,"abstract":"The class of 1-generator quasi-abelian codes over finite fields is revisited. Alternative and explicit characterization and enumeration of such codes are given. An algorithm to find all 1-generator quasi-abelian codes is provided. Two 1-generator quasi-abelian codes whose minimum distances are improved from Grassl’s online table are presented.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66233241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-dual and complementary dual abelian codes over Galois rings 伽罗瓦环上的自对偶和互补对偶阿贝尔码
Journal of Algebra Combinatorics Discrete Structures and Applications Pub Date : 2014-06-15 DOI: 10.13069/JACODESMATH.560406
Somphong Jitman, S. Ling
{"title":"Self-dual and complementary dual abelian codes over Galois rings","authors":"Somphong Jitman, S. Ling","doi":"10.13069/JACODESMATH.560406","DOIUrl":"https://doi.org/10.13069/JACODESMATH.560406","url":null,"abstract":"Self-dual and complementary dual cyclic/abelian codes over finite fields form important classes of linear codes that have been extensively studied due to their rich algebraic structures and wide applications. In this paper, abelian codes over Galois rings are studied in terms of the ideals in the group ring ${ GR}(p^r,s)[G]$, where $G$ is a finite abelian group and ${ GR}(p^r,s)$ is a Galois ring. Characterizations of self-dual abelian codes have been given together with necessary and sufficient conditions for the existence of a self-dual abelian code in ${ GR}(p^r,s)[G]$. A general formula for the number of such self-dual codes is established. In the case where $gcd(|G|,p)=1$, the number of self-dual abelian codes in ${ GR}(p^r,s)[G]$ is completely and explicitly determined. Applying known results on cyclic codes of length $p^a$ over ${ GR}(p^2,s)$, an explicit formula for the number of self-dual abelian codes in ${ GR}(p^2,s)[G]$ are given, where the Sylow $p$-subgroup of $G$ is cyclic. Subsequently, the characterization and enumeration of complementary dual abelian codes in ${ GR}(p^r,s)[G]$ are established. The analogous results for self-dual and complementary dual cyclic codes over Galois rings are therefore obtained as corollaries.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66232853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信