伽罗瓦环上的自对偶和互补对偶阿贝尔码

Q3 Mathematics
Somphong Jitman, S. Ling
{"title":"伽罗瓦环上的自对偶和互补对偶阿贝尔码","authors":"Somphong Jitman, S. Ling","doi":"10.13069/JACODESMATH.560406","DOIUrl":null,"url":null,"abstract":"Self-dual and complementary dual cyclic/abelian codes over finite fields form important classes of linear codes that have been extensively studied due to their rich algebraic structures and wide applications. In this paper, abelian codes over Galois rings are studied in terms of the ideals in the group ring ${ GR}(p^r,s)[G]$, where $G$ is a finite abelian group and ${ GR}(p^r,s)$ is a Galois ring. Characterizations of self-dual abelian codes have been given together with necessary and sufficient conditions for the existence of a self-dual abelian code in ${ GR}(p^r,s)[G]$. A general formula for the number of such self-dual codes is established. In the case where $\\gcd(|G|,p)=1$, the number of self-dual abelian codes in ${ GR}(p^r,s)[G]$ is completely and explicitly determined. Applying known results on cyclic codes of length $p^a$ over ${ GR}(p^2,s)$, an explicit formula for the number of self-dual abelian codes in ${ GR}(p^2,s)[G]$ are given, where the Sylow $p$-subgroup of $G$ is cyclic. Subsequently, the characterization and enumeration of complementary dual abelian codes in ${ GR}(p^r,s)[G]$ are established. The analogous results for self-dual and complementary dual cyclic codes over Galois rings are therefore obtained as corollaries.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-dual and complementary dual abelian codes over Galois rings\",\"authors\":\"Somphong Jitman, S. Ling\",\"doi\":\"10.13069/JACODESMATH.560406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-dual and complementary dual cyclic/abelian codes over finite fields form important classes of linear codes that have been extensively studied due to their rich algebraic structures and wide applications. In this paper, abelian codes over Galois rings are studied in terms of the ideals in the group ring ${ GR}(p^r,s)[G]$, where $G$ is a finite abelian group and ${ GR}(p^r,s)$ is a Galois ring. Characterizations of self-dual abelian codes have been given together with necessary and sufficient conditions for the existence of a self-dual abelian code in ${ GR}(p^r,s)[G]$. A general formula for the number of such self-dual codes is established. In the case where $\\\\gcd(|G|,p)=1$, the number of self-dual abelian codes in ${ GR}(p^r,s)[G]$ is completely and explicitly determined. Applying known results on cyclic codes of length $p^a$ over ${ GR}(p^2,s)$, an explicit formula for the number of self-dual abelian codes in ${ GR}(p^2,s)[G]$ are given, where the Sylow $p$-subgroup of $G$ is cyclic. Subsequently, the characterization and enumeration of complementary dual abelian codes in ${ GR}(p^r,s)[G]$ are established. The analogous results for self-dual and complementary dual cyclic codes over Galois rings are therefore obtained as corollaries.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/JACODESMATH.560406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.560406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

有限域上的自对偶和互补对偶循环/阿贝尔码是一类重要的线性码,由于其丰富的代数结构和广泛的应用而得到了广泛的研究。本文根据群环${GR}(p^r,s)[G]$中的理想研究了伽罗瓦环上的阿贝尔码,其中$G$是有限阿贝尔群,${GR}(p^r,s)$是伽罗瓦环。给出了${GR}(p^r,s)[G]$中自对偶阿贝尔码存在的充分必要条件。建立了这种自对偶码数的一般公式。在$\gcd(|G|,p)=1$的情况下,${GR}(p^r,s)[G]$中的自对偶阿贝尔码的个数是完全显式确定的。应用已知长度为$p^a$的循环码在${GR}(p^2,s)$上的结果,给出了${GR}(p^2,s)[G]$中自对偶阿贝尔码个数的显式公式,其中$G$的Sylow $p$-子群是循环的。随后,建立了${GR}(p^r,s)[G]$中互补对偶阿贝尔码的刻画和枚举。由此得到了伽罗瓦环上自对偶和互补对偶循环码的类似结果作为推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-dual and complementary dual abelian codes over Galois rings
Self-dual and complementary dual cyclic/abelian codes over finite fields form important classes of linear codes that have been extensively studied due to their rich algebraic structures and wide applications. In this paper, abelian codes over Galois rings are studied in terms of the ideals in the group ring ${ GR}(p^r,s)[G]$, where $G$ is a finite abelian group and ${ GR}(p^r,s)$ is a Galois ring. Characterizations of self-dual abelian codes have been given together with necessary and sufficient conditions for the existence of a self-dual abelian code in ${ GR}(p^r,s)[G]$. A general formula for the number of such self-dual codes is established. In the case where $\gcd(|G|,p)=1$, the number of self-dual abelian codes in ${ GR}(p^r,s)[G]$ is completely and explicitly determined. Applying known results on cyclic codes of length $p^a$ over ${ GR}(p^2,s)$, an explicit formula for the number of self-dual abelian codes in ${ GR}(p^2,s)[G]$ are given, where the Sylow $p$-subgroup of $G$ is cyclic. Subsequently, the characterization and enumeration of complementary dual abelian codes in ${ GR}(p^r,s)[G]$ are established. The analogous results for self-dual and complementary dual cyclic codes over Galois rings are therefore obtained as corollaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信