{"title":"$\\mathbb{Z}_{q} (\\mathbb{Z}_{q} +u\\mathbb{Z}_{q} )-$线性斜恒循环码","authors":"A. Melakhessou, N. Aydin, K. Guenda","doi":"10.13069/jacodesmath.671815","DOIUrl":null,"url":null,"abstract":"In this paper, we study skew constacyclic codes over the ring $\\mathbb{Z}_{q}R$ where $R=\\mathbb{Z}_{q}+u\\mathbb{Z}_{q}$, $q=p^{s}$ for a prime $p$ and $u^{2}=0$. We give the definition of these codes as subsets of the ring $\\mathbb{Z}_{q}^{\\alpha}R^{\\beta}$. Some structural properties of the skew polynomial ring $ R[x,\\theta]$ are discussed, where $ \\theta$ is an automorphism of $R$. We describe the generator polynomials of skew constacyclic codes over $ R $ and $\\mathbb{Z}_{q}R$. Using Gray images of skew constacyclic codes over $\\mathbb{Z}_{q}R$ we obtained some new linear codes over $\\mathbb{Z}_4$. Further, we have generalized these codes to double skew constacyclic codes over $\\mathbb{Z}_{q}R$.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"$\\\\mathbb{Z}_{q}(\\\\mathbb{Z}_{q}+u\\\\mathbb{Z}_{q})-$ linear skew constacyclic codes\",\"authors\":\"A. Melakhessou, N. Aydin, K. Guenda\",\"doi\":\"10.13069/jacodesmath.671815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study skew constacyclic codes over the ring $\\\\mathbb{Z}_{q}R$ where $R=\\\\mathbb{Z}_{q}+u\\\\mathbb{Z}_{q}$, $q=p^{s}$ for a prime $p$ and $u^{2}=0$. We give the definition of these codes as subsets of the ring $\\\\mathbb{Z}_{q}^{\\\\alpha}R^{\\\\beta}$. Some structural properties of the skew polynomial ring $ R[x,\\\\theta]$ are discussed, where $ \\\\theta$ is an automorphism of $R$. We describe the generator polynomials of skew constacyclic codes over $ R $ and $\\\\mathbb{Z}_{q}R$. Using Gray images of skew constacyclic codes over $\\\\mathbb{Z}_{q}R$ we obtained some new linear codes over $\\\\mathbb{Z}_4$. Further, we have generalized these codes to double skew constacyclic codes over $\\\\mathbb{Z}_{q}R$.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/jacodesmath.671815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.671815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
摘要
本文研究了环$\mathbb{Z}_{q}R$上的偏常环码,其中$R=\mathbb{Z}_{q}+u\mathbb{Z}_{q}$, $q=p^{s}$为素数$p$和$u^{2}=0$。我们给出了这些码作为环$\mathbb{Z}_{q}^{\alpha}R^{\beta}$子集的定义。讨论了歪多项式环$ R[x,\theta]$的一些结构性质,其中$ \theta$是$R$的自同构。我们描述了$ R $和$\mathbb{Z}_{q}R$上的偏常环码的生成器多项式。利用$\mathbb{Z}_{q}R$上偏常环码的灰度图像,得到了$\mathbb{Z}_4$上新的线性码。进一步,我们将这些码推广到$\mathbb{Z}_{q}R$上的双斜常环码。
$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ linear skew constacyclic codes
In this paper, we study skew constacyclic codes over the ring $\mathbb{Z}_{q}R$ where $R=\mathbb{Z}_{q}+u\mathbb{Z}_{q}$, $q=p^{s}$ for a prime $p$ and $u^{2}=0$. We give the definition of these codes as subsets of the ring $\mathbb{Z}_{q}^{\alpha}R^{\beta}$. Some structural properties of the skew polynomial ring $ R[x,\theta]$ are discussed, where $ \theta$ is an automorphism of $R$. We describe the generator polynomials of skew constacyclic codes over $ R $ and $\mathbb{Z}_{q}R$. Using Gray images of skew constacyclic codes over $\mathbb{Z}_{q}R$ we obtained some new linear codes over $\mathbb{Z}_4$. Further, we have generalized these codes to double skew constacyclic codes over $\mathbb{Z}_{q}R$.