$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})-$ linear skew constacyclic codes

Q3 Mathematics
A. Melakhessou, N. Aydin, K. Guenda
{"title":"$\\mathbb{Z}_{q}(\\mathbb{Z}_{q}+u\\mathbb{Z}_{q})-$ linear skew constacyclic codes","authors":"A. Melakhessou, N. Aydin, K. Guenda","doi":"10.13069/jacodesmath.671815","DOIUrl":null,"url":null,"abstract":"In this paper, we study skew constacyclic codes over the ring $\\mathbb{Z}_{q}R$ where $R=\\mathbb{Z}_{q}+u\\mathbb{Z}_{q}$, $q=p^{s}$ for a prime $p$ and $u^{2}=0$. We give the definition of these codes as subsets of the ring $\\mathbb{Z}_{q}^{\\alpha}R^{\\beta}$. Some structural properties of the skew polynomial ring $ R[x,\\theta]$ are discussed, where $ \\theta$ is an automorphism of $R$. We describe the generator polynomials of skew constacyclic codes over $ R $ and $\\mathbb{Z}_{q}R$. Using Gray images of skew constacyclic codes over $\\mathbb{Z}_{q}R$ we obtained some new linear codes over $\\mathbb{Z}_4$. Further, we have generalized these codes to double skew constacyclic codes over $\\mathbb{Z}_{q}R$.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.671815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we study skew constacyclic codes over the ring $\mathbb{Z}_{q}R$ where $R=\mathbb{Z}_{q}+u\mathbb{Z}_{q}$, $q=p^{s}$ for a prime $p$ and $u^{2}=0$. We give the definition of these codes as subsets of the ring $\mathbb{Z}_{q}^{\alpha}R^{\beta}$. Some structural properties of the skew polynomial ring $ R[x,\theta]$ are discussed, where $ \theta$ is an automorphism of $R$. We describe the generator polynomials of skew constacyclic codes over $ R $ and $\mathbb{Z}_{q}R$. Using Gray images of skew constacyclic codes over $\mathbb{Z}_{q}R$ we obtained some new linear codes over $\mathbb{Z}_4$. Further, we have generalized these codes to double skew constacyclic codes over $\mathbb{Z}_{q}R$.
$\mathbb{Z}_{q} (\mathbb{Z}_{q} +u\mathbb{Z}_{q} )-$线性斜恒循环码
本文研究了环$\mathbb{Z}_{q}R$上的偏常环码,其中$R=\mathbb{Z}_{q}+u\mathbb{Z}_{q}$, $q=p^{s}$为素数$p$和$u^{2}=0$。我们给出了这些码作为环$\mathbb{Z}_{q}^{\alpha}R^{\beta}$子集的定义。讨论了歪多项式环$ R[x,\theta]$的一些结构性质,其中$ \theta$是$R$的自同构。我们描述了$ R $和$\mathbb{Z}_{q}R$上的偏常环码的生成器多项式。利用$\mathbb{Z}_{q}R$上偏常环码的灰度图像,得到了$\mathbb{Z}_4$上新的线性码。进一步,我们将这些码推广到$\mathbb{Z}_{q}R$上的双斜常环码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信