有限域上某些4维Griesmer码的不存在性

Q3 Mathematics
Kazuki Kumegawa, T. Maruta
{"title":"有限域上某些4维Griesmer码的不存在性","authors":"Kazuki Kumegawa, T. Maruta","doi":"10.13069/jacodesmath.427968","DOIUrl":null,"url":null,"abstract":"We prove the non--existence of $[g_q(4,d),4,d]_q$ codes for $d=2q^3-rq^2-2q+1$ for $3 \\le r \\le (q+1)/2$, $q \\ge 5$; $d=2q^3-3q^2-3q+1$ for $q \\ge 9$; $d=2q^3-4q^2-3q+1$ for $q \\ge 9$; and $d=q^3-q^2-rq-2$ with $r=4, 5$ or $6$ for $q \\ge 9$, where $g_q(4,d)=\\sum_{i=0}^{3} \\left\\lceil d/q^i \\right\\rceil$. This yields that $n_q(4,d) = g_q(4,d)+1$ for $2q^3-3q^2-3q+1 \\le d \\le 2q^3-3q^2$, $2q^3-5q^2-2q+1 \\le d \\le 2q^3-5q^2$ and $q^3-q^2-rq-2 \\le d \\le q^3-q^2-rq$ with $4 \\le r \\le 6$ for $q \\ge 9$ and that $n_q(4,d) \\ge g_q(4,d)+1$ for $2q^3-rq^2-2q+1 \\le d \\le 2q^3-rq^2-q$ for $3 \\le r \\le (q+1)/2$, $q \\ge 5$ and $2q^3-4q^2-3q+1 \\le d \\le 2q^3-4q^2-2q$ for $q \\ge 9$, where $n_q(4,d)$ denotes the minimum length $n$ for which an $[n,4,d]_q$ code exists.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-existence of some 4-dimensional Griesmer codes over finite fields\",\"authors\":\"Kazuki Kumegawa, T. Maruta\",\"doi\":\"10.13069/jacodesmath.427968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the non--existence of $[g_q(4,d),4,d]_q$ codes for $d=2q^3-rq^2-2q+1$ for $3 \\\\le r \\\\le (q+1)/2$, $q \\\\ge 5$; $d=2q^3-3q^2-3q+1$ for $q \\\\ge 9$; $d=2q^3-4q^2-3q+1$ for $q \\\\ge 9$; and $d=q^3-q^2-rq-2$ with $r=4, 5$ or $6$ for $q \\\\ge 9$, where $g_q(4,d)=\\\\sum_{i=0}^{3} \\\\left\\\\lceil d/q^i \\\\right\\\\rceil$. This yields that $n_q(4,d) = g_q(4,d)+1$ for $2q^3-3q^2-3q+1 \\\\le d \\\\le 2q^3-3q^2$, $2q^3-5q^2-2q+1 \\\\le d \\\\le 2q^3-5q^2$ and $q^3-q^2-rq-2 \\\\le d \\\\le q^3-q^2-rq$ with $4 \\\\le r \\\\le 6$ for $q \\\\ge 9$ and that $n_q(4,d) \\\\ge g_q(4,d)+1$ for $2q^3-rq^2-2q+1 \\\\le d \\\\le 2q^3-rq^2-q$ for $3 \\\\le r \\\\le (q+1)/2$, $q \\\\ge 5$ and $2q^3-4q^2-3q+1 \\\\le d \\\\le 2q^3-4q^2-2q$ for $q \\\\ge 9$, where $n_q(4,d)$ denotes the minimum length $n$ for which an $[n,4,d]_q$ code exists.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/jacodesmath.427968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.427968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

我们证明的不存在 $[g_q(4,d),4,d]_q$ 代码 $d=2q^3-rq^2-2q+1$ 为了 $3 \le r \le (q+1)/2$, $q \ge 5$; $d=2q^3-3q^2-3q+1$ 为了 $q \ge 9$; $d=2q^3-4q^2-3q+1$ 为了 $q \ge 9$;和 $d=q^3-q^2-rq-2$ 有 $r=4, 5$ 或 $6$ 为了 $q \ge 9$,其中 $g_q(4,d)=\sum_{i=0}^{3} \left\lceil d/q^i \right\rceil$。结果是 $n_q(4,d) = g_q(4,d)+1$ 为了 $2q^3-3q^2-3q+1 \le d \le 2q^3-3q^2$, $2q^3-5q^2-2q+1 \le d \le 2q^3-5q^2$ 和 $q^3-q^2-rq-2 \le d \le q^3-q^2-rq$ 有 $4 \le r \le 6$ 为了 $q \ge 9$ 这就是 $n_q(4,d) \ge g_q(4,d)+1$ 为了 $2q^3-rq^2-2q+1 \le d \le 2q^3-rq^2-q$ 为了 $3 \le r \le (q+1)/2$, $q \ge 5$ 和 $2q^3-4q^2-3q+1 \le d \le 2q^3-4q^2-2q$ 为了 $q \ge 9$,其中 $n_q(4,d)$ 表示最小长度。 $n$ 为了什么? $[n,4,d]_q$ 代码存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-existence of some 4-dimensional Griesmer codes over finite fields
We prove the non--existence of $[g_q(4,d),4,d]_q$ codes for $d=2q^3-rq^2-2q+1$ for $3 \le r \le (q+1)/2$, $q \ge 5$; $d=2q^3-3q^2-3q+1$ for $q \ge 9$; $d=2q^3-4q^2-3q+1$ for $q \ge 9$; and $d=q^3-q^2-rq-2$ with $r=4, 5$ or $6$ for $q \ge 9$, where $g_q(4,d)=\sum_{i=0}^{3} \left\lceil d/q^i \right\rceil$. This yields that $n_q(4,d) = g_q(4,d)+1$ for $2q^3-3q^2-3q+1 \le d \le 2q^3-3q^2$, $2q^3-5q^2-2q+1 \le d \le 2q^3-5q^2$ and $q^3-q^2-rq-2 \le d \le q^3-q^2-rq$ with $4 \le r \le 6$ for $q \ge 9$ and that $n_q(4,d) \ge g_q(4,d)+1$ for $2q^3-rq^2-2q+1 \le d \le 2q^3-rq^2-q$ for $3 \le r \le (q+1)/2$, $q \ge 5$ and $2q^3-4q^2-3q+1 \le d \le 2q^3-4q^2-2q$ for $q \ge 9$, where $n_q(4,d)$ denotes the minimum length $n$ for which an $[n,4,d]_q$ code exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信