Applied Environmental Biotechnology最新文献

筛选
英文 中文
On Applied Toxicology 应用毒理学研究
Applied Environmental Biotechnology Pub Date : 2019-03-14 DOI: 10.26789/AEB.2019.02.001
J. Gu
{"title":"On Applied Toxicology","authors":"J. Gu","doi":"10.26789/AEB.2019.02.001","DOIUrl":"https://doi.org/10.26789/AEB.2019.02.001","url":null,"abstract":"Analytical chemistry allows an accurate quantification of the total concentrations of a range of chemicals in different media of the ecosystems and contaminated sites, but the numerical values do not have direct relevance to the toxicity of them because the measured concentrations do not represent the active fraction that imposes toxic effects on organisms. It is apparent that an assessment of pollutant concentrations in ecosystems shall be made with new innovation to obtain the organism exposed concentrations so that the subsequent toxicological effects based on these data can provide reliable estimate on toxicity for management decision accordingly. Applied Toxicology, e.g., Ecotoxicology, and Environmental Toxicology, therefore shall have a different scientific framework to adopt the use of a new concentration term for pollutants to establish a close relationship between the effective concentration in the ecosystem and the toxicity to the organisms to make a meaningful understanding of the ecotoxicology and environmental toxicity. In addition, the choice of the organisms as indicators for chemical toxicity assays is another critical issue and the organism shall be selected with an international consensus to establish a solid baseline for comparable results from different laboratories around the world. Doing this way, the Applied Toxicology can make great advancement and contributes to the society better on a more competitive level based on exact science similar to physical sciences today. A greater opportunity is ahead and effective action needs to be taken collectively and immediately to advance the new knowledge of this research subject.","PeriodicalId":36987,"journal":{"name":"Applied Environmental Biotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41658100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Microbial Ecotoxicology As An Emerging Research Subject 微生物生态毒理学作为一门新兴的研究学科
Applied Environmental Biotechnology Pub Date : 2019-02-26 DOI: 10.26789/AEB.2019.01.001
J. Gu
{"title":"Microbial Ecotoxicology As An Emerging Research Subject","authors":"J. Gu","doi":"10.26789/AEB.2019.01.001","DOIUrl":"https://doi.org/10.26789/AEB.2019.01.001","url":null,"abstract":"Microorganisms play an important role in cycling of elements of ecosystems, including a wide range of chemical pollutants from anthropogenic origin. These pollutants in ecosystems, particularly aquatic, and sediment and soils, are in different physical and chemical forms in association with the inorganic and organic constituents of the sediment and soils, resulting in variable availability of them to microorganisms for assimilation and transformation. A thorough and comprehensive knowledge of the physical and chemical states of them in the environments requires detailed information of both the bioavailable pollutant concentration and also the metabolic capability of the microorganisms to assess the ecological and environmental toxicity of these pollutants meaningfully. Apart from the primary role as decomposers, microorganisms are qualified to be sensitive indicators for environmental pollution, and ecological health and ecotoxicity of pollutants because of their very short generation time and quickly response to chemical pollutants than higher and large organisms. When used for testing with the same strain, different laboratories can generate high reproducible results to allow comparison of the data feasible, not mention the reduction in cost. Based on the current advances made on genomics analysis and bioinformatics, microbial genomes are easily assembled with the technologies available to providing useful transcriptomic and metabolic annotations, expression and prediction to allow advance toxicological to another level.","PeriodicalId":36987,"journal":{"name":"Applied Environmental Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45095363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Nanocellulose-Graphene Oxide Hybrid Aerogel to Water Purification 纳米纤维素-氧化石墨烯混合气凝胶用于水净化
Applied Environmental Biotechnology Pub Date : 2019-02-26 DOI: 10.26789/AEB.2019.01.003
Jie Wei, Shi Gui, Junqing Wu, Dandan Xu, Yun Sun, Xiaoying Dong, Yang Dai, Yongfeng Li
{"title":"Nanocellulose-Graphene Oxide Hybrid Aerogel to Water Purification","authors":"Jie Wei, Shi Gui, Junqing Wu, Dandan Xu, Yun Sun, Xiaoying Dong, Yang Dai, Yongfeng Li","doi":"10.26789/AEB.2019.01.003","DOIUrl":"https://doi.org/10.26789/AEB.2019.01.003","url":null,"abstract":"The depletion of non-renewable resources and pollution of industrial wastewater are major challenges to the human security. Using green renewable resources to address the above problems coincides with the sustainable development of human society. In this study, we attend to design hybrid aerogel, derived from nanocellulose and graphene oxide (GO), to realize wastewater purification via adsorption behavior, benefitting from its high specific surface area and high porosity. Nanocellulose, isolated from Amorpha fruticosa Linn. as a shrub plant, and graphene oxide were combinely employed to prepare the hybird aerogel via freeze-drying process; and its purification ability to remove methylene blue(MB), congo red (CR) and waste oil in waste water was tested. The results indicate that the isolated nanocellulose bears abundant hydroxyl groups and high aspect ratio of ~500 with average diameter of ~30 nm, which is well distributed on the surface of graphene oxide sheet with side length of about 1~3 μm, both of which form the hybrid aerogel with porosity larger than 99%. The nanomaterials physically assemble its orignial aggregation state. When the mass ratio of nanocellulose and graphene oxide is 8 : 2, the hybrid aerogel reaches the highest adsorption capacity of 265.6mg/g and 21.5mg/g for MB and CR, respectively. The hybrid aerogel after hydrophobic treatment shows excellent oil adsorption capacity up to 25.6 g/g, which is beneficial to oil/water separation. This strategy provides potential great-application of the nanocellulose in water purification.","PeriodicalId":36987,"journal":{"name":"Applied Environmental Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47668084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Trend and impact of plant cell publications: a bibliometric analysis of global research output from 1992 to 2016 植物细胞出版物的趋势和影响:1992年至2016年全球研究产出的文献计量分析
Applied Environmental Biotechnology Pub Date : 2018-03-26 DOI: 10.26789/AEB.2018.01.003
T. N. P. Nguyen, Y. Ho
{"title":"Trend and impact of plant cell publications: a bibliometric analysis of global research output from 1992 to 2016","authors":"T. N. P. Nguyen, Y. Ho","doi":"10.26789/AEB.2018.01.003","DOIUrl":"https://doi.org/10.26789/AEB.2018.01.003","url":null,"abstract":"The objective of this writing was to conduct a bibliometric analysis of all plant cell publications during the period from 1992 to 2016 by using the Science Citation Index Expanded (SCI-EXPANDED) in the Clarivate Analytics Web of Science database. Basic analysis includes document types, languages, journals, Web of Science categories, distribution by countries and institutes. Indicators such as total, independent, collaborative, first author, corresponding author, and single author publications were applied to compare publication performances by specific countries and institutions of the top ranking. The G7 dominated most of the high impact publications in plant cell research. The high-ranked contributing institutions were non-universities from France, China, Russia, Spain, and USA. University of Tokyo in Japan was the most productive university single out on the top. Plant cell articles were published mainly in Web of Science of plant sciences. Plant Physiology , Plant Journal , and Plant Cell  were the top three productive journals on this subject. In addition, top cited and the high impact articles in recent years were also compared. Distributions of words in title, author keywords, and KeyWords Plus  in different periods were used for searching research focuses.","PeriodicalId":36987,"journal":{"name":"Applied Environmental Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47329417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The endocrine-disrupting plasticizers will stay with us for a long time 干扰内分泌的增塑剂将伴随我们很长一段时间
Applied Environmental Biotechnology Pub Date : 2018-03-26 DOI: 10.26789/AEB.2018.01.008
J. Gu
{"title":"The endocrine-disrupting plasticizers will stay with us for a long time","authors":"J. Gu","doi":"10.26789/AEB.2018.01.008","DOIUrl":"https://doi.org/10.26789/AEB.2018.01.008","url":null,"abstract":"Many synthetic chemicals are widely used in our daily products and they are in constant contacts with humans through many different routes of exposure. In addition to the toxic environmental pollutants known with diminishing usage, plasticizers, a new class of emerging chemicals, are becoming of human health concerns increasingly. Microbial degradation of plasticizers is generally known, but the toxicity and other effects on human and animals are less well understood, especially in terms of reproductive development and endocrine-disrupting activity. Their major impact to Earth is the large quantities of them used on a daily basis and close contacts with biota of the biosphere. Knowledge of their impact shall be focused more specifically on developmental and endocrine system of animals than mortality in traditional toxicology as an end-point to better assess the threats to the biosphere. New directions on this research topic are presented to advance new knowledge in the future research and development.","PeriodicalId":36987,"journal":{"name":"Applied Environmental Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48237292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Phytoremediation of cyanide and iron cyanide complexes and the mechanisms involved 氰化物和氰化铁配合物的植物修复及其机制
Applied Environmental Biotechnology Pub Date : 2018-03-26 DOI: 10.26789/AEB.2018.01.002
W. Au, Xiao-Zhang Yu, J. Gu
{"title":"Phytoremediation of cyanide and iron cyanide complexes and the mechanisms involved","authors":"W. Au, Xiao-Zhang Yu, J. Gu","doi":"10.26789/AEB.2018.01.002","DOIUrl":"https://doi.org/10.26789/AEB.2018.01.002","url":null,"abstract":"This paper reviewed the physical and chemical properties of cyanide species - free cyanide and iron-cyanide complexes, and the potential of cyanide phytoremediation with reference to the phytotoxicity of free cyanide and iron-cyanide complexes in plants. There are three possible pathways, which are β-cyanoalanine synthase, sulfur transferase and formamide hydrolase pathways, for transforming and assimilating endogenous free cyanide in plants. Iron-cyanide complexes are generally resistant to microbial and fungal degradation. It is suggested that there may be undiscovered degradation pathways involved in assimilating iron-cyanide complexes in plants; however the detailed pathways of assimilation of iron-cyanides are still unknown. While uptake of free cyanide is mainly by simple diffusion, as iron-cyanide complexes are membrane-impermeable, it is suggested that the complexes may be transported into the plants through the mode of protein mediated uptake. Upon uptake, biological fates of cyanide species vary with different species of cyanide, depending on their chemical properties and concentrations. Phytotoxicity of free cyanide in plants is much higher than that of iron-cyanide complexes as plants could generally withstand a higher concentration of iron-cyanide complexes comparing with free cyanide. However, it is still unsure if the iron-cyanide complexes are toxic themselves or if they disrupt the metabolism of plants indirectly. It is known that endogenous cyanogenic compounds play a role in providing sources of nitrogen and acting as precursors in some biochemical processes in plants. Studies suggested that exogenous cyanide species, to a certain extent, could benefit the plants through providing nutrition to them. However, there is still no study conclusively indicates that there is a direct acquisition of exogenous cyanide species by plants as their alternative source of nitrogen. Further investigations on the degradation pathways of iron-cyanide complexes and the essential enzymes involved in phyto-assimilation of iron-cyanide complexes are required for better understanding of the degradation and assimilation pathways of cyanogenic compounds in plants.","PeriodicalId":36987,"journal":{"name":"Applied Environmental Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47446028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Optimized xylose isomerase uptake and expression level in Saccharomyces cerevisiae for improving ethanol production 优化酿酒酵母木糖异构酶吸收和表达水平以提高乙醇产量
Applied Environmental Biotechnology Pub Date : 2018-03-26 DOI: 10.26789/AEB.2018.01.007
Mei Zhang, Wenxiu Fan, Jingyue Wang, Limin Cao
{"title":"Optimized xylose isomerase uptake and expression level in Saccharomyces cerevisiae for improving ethanol production","authors":"Mei Zhang, Wenxiu Fan, Jingyue Wang, Limin Cao","doi":"10.26789/AEB.2018.01.007","DOIUrl":"https://doi.org/10.26789/AEB.2018.01.007","url":null,"abstract":"The ability to engineer the yeast Saccharomyces cerevisiae to efficiently convert lignocellulosic biomass to ethanol remains a considerable challenge. Here, we propose a new reprogrammable strategy to optimize the expression level of the xylose isomerase (XI) gene with the induction of mutations in S . cerevisiae  to improve efficient ethanol production and productivity. We sought to fine-tune the xylose uptake and catabolism abilities of S. cerevisiae  during fermentation by improving efficiency of the xylose transporter, which was fused with four copies of the XI gene under the control of different promoters to obtain recombinant yeast strains. In fermentation experiments, the optimized strain CW9 cultured in yeast extract-peptone (YP) medium containing approximately 65 g/L glucose and 55 g/L xylose produced consistent ethanol yields of 0.45 g/g total sugar in about 72 h, which was close to 90% of the theoretical yield. These promising results indicate that strain CW9 is the best producer of ethanol from mixed sugar when synthetically regulating the xylose assimilation pathway. Overall, this study provides an optimal method to control XI expression levels to find better conditions for enhancing biofuel production.","PeriodicalId":36987,"journal":{"name":"Applied Environmental Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45211270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Enhanced organic matter degradation by a sediment microbial fuel cell system using hexavalent chromium as an electron acceptor 以六价铬为电子受体的沉积物微生物燃料电池系统增强有机物降解
Applied Environmental Biotechnology Pub Date : 2018-01-22 DOI: 10.26789/AEB.2018.01.001
Yongyan Niu, Khan Aman, Zhengjun Chen, Shuai Zhao, Kejia Wu, Xinglong Xiao, Xiangkai Li
{"title":"Enhanced organic matter degradation by a sediment microbial fuel cell system using hexavalent chromium as an electron acceptor","authors":"Yongyan Niu, Khan Aman, Zhengjun Chen, Shuai Zhao, Kejia Wu, Xinglong Xiao, Xiangkai Li","doi":"10.26789/AEB.2018.01.001","DOIUrl":"https://doi.org/10.26789/AEB.2018.01.001","url":null,"abstract":"In this study, a sediment microbial fuel cell (SMFC) system for the simultaneous biodegradation of organic matter and detoxification of hexavalent chromium Cr (VI) was investigated. The total organic carbon (TOC) removal rate of the SMFC with Cr (VI) was 30.07%, which was significantly higher than that in a SMFC without Cr (VI) (13.74%). In the SMFC with Cr (VI), the maximum values of open-circuit voltage (OCV) and power density were 408 mV and 4.8 mW/m 2 , respectively. During the long-term operation of the SMFC with Cr (VI), 25 mg/L of Cr (VI) were completely reduced from all four consecutive batches over 48 days. MiSeq sequencing revealed that the biofilm microbial community of the anode comprised of Bacteroidetes (42.9%), Proteobacteria (33.6%), Chloroflexi (7.5%), and Euryarchaeota (7.5%) as the predominant phyla. Compared with that of the sediment, certain families were enriched; they included Pseudomonadaceae (46.88-fold), Flavobacteriaceae (5.05-fold), and Syntrophaceae (4.48-fold), which are organic matter-degrading bacteria. These results suggest that SMFCs are useful for TOC removal and detoxification of heavy metals in remediation of contaminated lakes.","PeriodicalId":36987,"journal":{"name":"Applied Environmental Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44418729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信