Richard Crawley, Sina Amirrajab, Didier Lustermans, Robert J Holtackers, Sven Plein, Mitko Veta, Marcel Breeuwer, Amedeo Chiribiri, Cian M Scannell
{"title":"Automated cardiovascular MR myocardial scar quantification with unsupervised domain adaptation.","authors":"Richard Crawley, Sina Amirrajab, Didier Lustermans, Robert J Holtackers, Sven Plein, Mitko Veta, Marcel Breeuwer, Amedeo Chiribiri, Cian M Scannell","doi":"10.1186/s41747-024-00497-3","DOIUrl":"10.1186/s41747-024-00497-3","url":null,"abstract":"<p><p>Quantification of myocardial scar from late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) images can be facilitated by automated artificial intelligence (AI)-based analysis. However, AI models are susceptible to domain shifts in which the model performance is degraded when applied to data with different characteristics than the original training data. In this study, CycleGAN models were trained to translate local hospital data to the appearance of a public LGE CMR dataset. After domain adaptation, an AI scar quantification pipeline including myocardium segmentation, scar segmentation, and computation of scar burden, previously developed on the public dataset, was evaluated on an external test set including 44 patients clinically assessed for ischemic scar. The mean ± standard deviation Dice similarity coefficients between the manual and AI-predicted segmentations in all patients were similar to those previously reported: 0.76 ± 0.05 for myocardium and 0.75 ± 0.32 for scar, 0.41 ± 0.12 for scar in scans with pathological findings. Bland-Altman analysis showed a mean bias in scar burden percentage of -0.62% with limits of agreement from -8.4% to 7.17%. These results show the feasibility of deploying AI models, trained with public data, for LGE CMR quantification on local clinical data using unsupervised CycleGAN-based domain adaptation. RELEVANCE STATEMENT: Our study demonstrated the possibility of using AI models trained from public databases to be applied to patient data acquired at a specific institution with different acquisition settings, without additional manual labor to obtain further training labels.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"93"},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olaf Dietrich, Sergio Lentini, Osman Öcal, Pierre Bour, Thibaut L Faller, Valéry Ozenne, Jens Ricke, Max Seidensticker
{"title":"Accuracy of 3D real-time MRI temperature mapping in gel phantoms during microwave heating.","authors":"Olaf Dietrich, Sergio Lentini, Osman Öcal, Pierre Bour, Thibaut L Faller, Valéry Ozenne, Jens Ricke, Max Seidensticker","doi":"10.1186/s41747-024-00479-5","DOIUrl":"10.1186/s41747-024-00479-5","url":null,"abstract":"<p><strong>Background: </strong>Interventional magnetic resonance imaging (MRI) can provide a comprehensive setting for microwave ablation of tumors with real-time monitoring of the energy delivery using MRI-based temperature mapping. The purpose of this study was to quantify the accuracy of three-dimensional (3D) real-time MRI temperature mapping during microwave heating in vitro by comparing MRI thermometry data to reference data measured by fiber-optical thermometry.</p><p><strong>Methods: </strong>Nine phantom experiments were evaluated in agar-based gel phantoms using an in-room MR-conditional microwave system and MRI thermometry. MRI measurements were performed for 700 s (25 slices; temporal resolution 2 s). The temperature was monitored with two fiber-optical temperature sensors approximately 5 mm and 10 mm distant from the microwave antenna. Temperature curves of the sensors were compared to MRI temperature data of single-voxel regions of interest (ROIs) at the sensor tips; the accuracy of MRI thermometry was assessed as the root-mean-squared (RMS)-averaged temperature difference. Eighteen neighboring voxels around the original ROI were also evaluated and the voxel with the smallest temperature difference was additionally selected for further evaluation.</p><p><strong>Results: </strong>The maximum temperature changes measured by the fiber-optical sensors ranged from 7.3 K to 50.7 K. The median RMS-averaged temperature differences in the originally selected voxels ranged from 1.4 K to 3.4 K. When evaluating the minimum-difference voxel from the neighborhood, the temperature differences ranged from 0.5 K to 0.9 K. The microwave antenna and the MRI-conditional in-room microwave generator did not induce relevant radiofrequency artifacts.</p><p><strong>Conclusion: </strong>Accurate 3D real-time MRI temperature mapping during microwave heating with very low RMS-averaged temperature errors below 1 K is feasible in gel phantoms.</p><p><strong>Relevance statement: </strong>Accurate MRI-based volumetric real-time monitoring of temperature distribution and thermal dose is highly relevant in clinical MRI-based interventions and can be expected to improve local tumor control, as well as procedural safety by extending the limits of thermal (e.g., microwave) ablation of tumors in the liver and in other organs.</p><p><strong>Key points: </strong>Interventional MRI can provide a comprehensive setting for the microwave ablation of tumors. MRI can monitor the microwave ablation using real-time MRI-based temperature mapping. 3D real-time MRI temperature mapping during microwave heating is feasible. Measured temperature errors were below 1 °C in gel phantoms. The active in-room microwave generator did not induce any relevant radiofrequency artifacts.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"92"},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jannis Bodden, Philipp Prucker, Anjany Sekuboyina, Malek El Husseini, Katharina Grau, Sebastian Rühling, Egon Burian, Claus Zimmer, Thomas Baum, Jan S Kirschke
{"title":"Reproducibility of CT-based opportunistic vertebral volumetric bone mineral density measurements from an automated segmentation framework.","authors":"Jannis Bodden, Philipp Prucker, Anjany Sekuboyina, Malek El Husseini, Katharina Grau, Sebastian Rühling, Egon Burian, Claus Zimmer, Thomas Baum, Jan S Kirschke","doi":"10.1186/s41747-024-00483-9","DOIUrl":"10.1186/s41747-024-00483-9","url":null,"abstract":"<p><strong>Background: </strong>To investigate the reproducibility of automated volumetric bone mineral density (vBMD) measurements from routine thoracoabdominal computed tomography (CT) assessed with segmentations by a convolutional neural network and automated correction of contrast phases, on diverse scanners, with scanner-specific asynchronous or scanner-agnostic calibrations.</p><p><strong>Methods: </strong>We obtained 679 observations from 278 CT scans in 121 patients (77 males, 63.6%) studied from 04/2019 to 06/2020. Observations consisted of two vBMD measurements from Δdifferent reconstruction kernels (n = 169), Δcontrast phases (n = 133), scan Δsessions (n = 123), Δscanners (n = 63), or Δall of the aforementioned (n = 20), and observations lacking scanner-specific calibration (n = 171). Precision was assessed using root-mean-square error (RMSE) and root-mean-square coefficient of variation (RMSCV). Cross-measurement agreement was assessed using Bland-Altman plots; outliers within 95% confidence interval of the limits of agreement were reviewed.</p><p><strong>Results: </strong>Repeated measurements from Δdifferent reconstruction kernels were highly precise (RMSE 3.0 mg/cm<sup>3</sup>; RMSCV 1.3%), even for consecutive scans with different Δcontrast phases (RMSCV 2.9%). Measurements from different Δscan sessions or Δscanners showed decreased precision (RMSCV 4.7% and 4.9%, respectively). Plot-review identified 12 outliers from different scan Δsessions, with signs of hydropic decompensation. Observations with Δall differences showed decreased precision compared to those lacking scanner-specific calibration (RMSCV 5.9 and 3.7, respectively).</p><p><strong>Conclusion: </strong>Automatic vBMD assessment from routine CT is precise across varying setups, when calibrated appropriately. Low precision was found in patients with signs of new or worsening hydropic decompensation, what should be considered an exclusion criterion for both opportunistic and dedicated quantitative CT.</p><p><strong>Relevance statement: </strong>Automated CT-based vBMD measurements are precise in various scenarios, including cross-session and cross-scanner settings, and may therefore facilitate opportunistic screening for osteoporosis and surveillance of BMD in patients undergoing routine clinical CT scans.</p><p><strong>Key points: </strong>Artificial intelligence-based tools facilitate BMD measurements in routine clinical CT datasets. Automated BMD measurements are highly reproducible in various settings. Reliable, automated opportunistic osteoporosis diagnostics allow for large-scale application.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"86"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Lembrechts, Lucas Desauw, Walter Coudyzer, Annouschka Laenen, Inge Fourneau, Geert Maleux
{"title":"Abdominal aneurysm sac thrombus CT density and volume after EVAR: which association with underlying endoleak?","authors":"Matthias Lembrechts, Lucas Desauw, Walter Coudyzer, Annouschka Laenen, Inge Fourneau, Geert Maleux","doi":"10.1186/s41747-024-00489-3","DOIUrl":"10.1186/s41747-024-00489-3","url":null,"abstract":"<p><strong>Background: </strong>Our aim was to analyse abdominal aneurysm sac thrombus density and volume on computed tomography (CT) after endovascular aneurysm repair (EVAR).</p><p><strong>Methods: </strong>Patients who underwent EVAR between January 2005 and December 2010 and had at least four follow-up CT exams available over the first five years of follow-up were included in this retrospective single-centre study. Thrombus density and aneurysm sac volume were calculated on unenhanced CT scans. Linear mixed models were used for data analysis.</p><p><strong>Results: </strong>Out of 82 patients, 44 (54%) had an endoleak on post-EVAR contrast-enhanced CT. Thrombus density significantly increased over time in both the endoleak and non-endoleak groups, with a slope of 0.159 UH/month (95% confidence interval [CI] 0.115-0.202), p < 0.0001) and 0.052 UH/month (95% CI 0.002-0.102, p = 0.041). In patients without endoleak, a significant decrease in aneurysm sac volume was identified over time (slope -0.891 cc/month, 95% CI -1.200 to -0.581); p < 0.001) compared to patients with endoleak (slope 0.284 cc/month, 95% CI -0.031 to 0.523, p = 0.082). The association between thrombus density and aneurysm sac volume was positive in the endoleak group (slope 1.543 UH/cc, 95% CI 0.948-2.138, p < 0.001) and negative in the non-endoleak group (slope -1.450 UH/cc, 95% CI -2.326 to -0.574, p = 0.001).</p><p><strong>Conclusion: </strong>We observed a progressive increase in thrombus density of the aneurysm sac after EVAR in patients with and without endoleak, more pronounced in patients with endoleak. The association between aneurysm volume and thrombus density was positive in patients with and negative in those without endoleak.</p><p><strong>Relevance statement: </strong>A progressive increase in thrombus density and volume of abdominal aortic aneurysm sac on unenhanced CT might suggest underlying endoleak lately after EVAR.</p><p><strong>Key points: </strong>Thrombus density of the aneurysm sac after EVAR increased over time. Progressive increase in thrombus density was significantly associated to the underlying endoleak. The association between aneurysm volume and thrombus density was positive in patients with and negative in those without endoleak.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"88"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dirk Graafen, Willi Bart, Moritz C Halfmann, Lukas Müller, Lukas Hobohm, Yang Yang, Achim Neufang, Christine Espinola-Klein, Michael B Pitton, Roman Kloeckner, Akos Varga-Szemes, Tilman Emrich
{"title":"In vitro and in vivo optimized reconstruction for low-keV virtual monoenergetic photon-counting detector CT angiography of lower legs.","authors":"Dirk Graafen, Willi Bart, Moritz C Halfmann, Lukas Müller, Lukas Hobohm, Yang Yang, Achim Neufang, Christine Espinola-Klein, Michael B Pitton, Roman Kloeckner, Akos Varga-Szemes, Tilman Emrich","doi":"10.1186/s41747-024-00481-x","DOIUrl":"10.1186/s41747-024-00481-x","url":null,"abstract":"<p><strong>Background: </strong>Lower extremity peripheral artery disease frequently presents with calcifications which reduces the accuracy of computed tomography (CT) angiography, especially below-the-knee. Photon-counting detector (PCD)-CT offers improved spatial resolution and less calcium blooming. We aimed to identify the optimal reconstruction parameters for PCD-CT angiography of the lower legs.</p><p><strong>Methods: </strong>Tubes with different diameters (1-5 mm) were filled with different iodine concentrations and scanned in a water container. Images were reconstructed with 0.4 mm isotropic resolution using a quantitative kernel at all available sharpness levels (Qr36 to Qr76) and using different levels of quantum iterative reconstruction (QIR-2-4). Noise and image sharpness were determined for all reconstructions. Additionally, CT angiograms of 20 patients, reconstructed with a medium (Qr44), sharp (Qr60), and ultrasharp (Qr72) kernel at QIR-2-4, were evaluated by three readers assessing noise, delineation of plaques and vessel walls, and overall quality.</p><p><strong>Results: </strong>In the phantom study, increased kernel sharpness led to higher image noise (e.g., 16, 38, 77 HU for Qr44, Qr60, Qr72, and QIR-3). Image sharpness increased with increasing kernel sharpness, reaching a plateau at the medium-high level 60. Higher QIR levels decreased image noise (e.g., 51, 38, 25 HU at QIR-2-4 and Qr60) without reducing vessel sharpness. The qualitative in vivo results confirmed these findings: the sharp kernel (Qr60) with the highest QIR yielded the best overall quality.</p><p><strong>Conclusion: </strong>The combination of a sharpness level optimized reconstruction kernel (Qr60) and the highest QIR level yield the best image quality for PCD-CT angiography of the lower legs when reconstructed at 0.4-mm resolution.</p><p><strong>Relevance statement: </strong>Using high-resolution PCD-CT angiography with optimized reconstruction parameters might improve diagnostic accuracy and confidence in peripheral artery disease of the lower legs.</p><p><strong>Key points: </strong>Effective exploitation of the potential of PCD-CT angiography requires optimized reconstruction parameters. Too soft or too sharp reconstruction kernels reduce image quality. The highest level of quantum iterative reconstruction provides the best image quality.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"89"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jens T Bakker, Jorine E Hartman, Karin Klooster, David A Lynch, Marieke C van der Molen, Jean-Paul Charbonnier, Michail Tsiaousis, Rozemarijn Vliegenthart, Dirk-Jan Slebos
{"title":"Automated evaluation of diaphragm configuration based on chest CT in COPD patients.","authors":"Jens T Bakker, Jorine E Hartman, Karin Klooster, David A Lynch, Marieke C van der Molen, Jean-Paul Charbonnier, Michail Tsiaousis, Rozemarijn Vliegenthart, Dirk-Jan Slebos","doi":"10.1186/s41747-024-00491-9","DOIUrl":"10.1186/s41747-024-00491-9","url":null,"abstract":"<p><strong>Background: </strong>Severe chronic obstructive pulmonary disease (COPD) often results in hyperinflation and flattening of the diaphragm. An automated computed tomography (CT)-based tool for quantifying diaphragm configuration, a biomarker for COPD, was developed in-house and tested in a large cohort of COPD patients.</p><p><strong>Methods: </strong>We used the LungQ platform to extract the lung-diaphragm intersection, as direct diaphragm segmentation is challenging. The tool computed the diaphragm index (surface area/projected surface area) as a measure of diaphragm configuration on inspiratory scans in a COPDGene subcohort. Visual inspection of 250 randomly selected segmentations served as a quality check. Associations between the diaphragm index, Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages, forced expiratory volume in 1 s (FEV1) % predicted, and CT-derived emphysema scores were explored using analysis of variance and Pearson correlation.</p><p><strong>Results: </strong>The tool yielded incomplete segmentation in 9.2% (2.4% major defect, 6.8% minor defect) of 250 randomly selected cases. In 8431 COPDGene subjects (4240 healthy; 4191 COPD), the diaphragm index was increasingly lower with higher GOLD stages (never-smoked 1.83 ± 0.16; GOLD-0 1.79 ± 0.18; GOLD-1 1.71 ± 0.15; GOLD-2: 1.67 ± 0.16; GOLD-3 1.58 ± 0.14; GOLD-4 1.54 ± 0.11) (p < 0.001). Associations were found between the diaphragm index and both FEV1% predicted (r = 0.44, p < 0.001) and emphysema score (r = -0.36, p < 0.001).</p><p><strong>Conclusion: </strong>We developed an automated tool to quantify the diaphragm configuration in chest CT. The diaphragm index was associated with COPD severity, FEV1%predicted, and emphysema score.</p><p><strong>Relevance statement: </strong>Due to the hypothesized relationship between diaphragm dysfunction and diaphragm configuration in COPD patients, automatic quantification of diaphragm configuration may prove useful in evaluating treatment efficacy in terms of lung volume reduction.</p><p><strong>Key points: </strong>Severe COPD changes diaphragm configuration to a flattened state, impeding function. An automated tool quantified diaphragm configuration on chest-CT providing a diaphragm index. The diaphragm index was correlated to COPD severity and may aid treatment assessment.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"87"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mara Marieke Katrien Veenstra, Erik Vegt, Marcel Segbers, Stijn Franssen, Bas Groot Koerkamp, Frederik Anton Verburg, Maarten Guillaume Josephus Thomeer
{"title":"Intra-arterial PSMA injection using hepatic arterial infusion pump in intrahepatic cholangiocarcinoma: a proof-of-concept study.","authors":"Mara Marieke Katrien Veenstra, Erik Vegt, Marcel Segbers, Stijn Franssen, Bas Groot Koerkamp, Frederik Anton Verburg, Maarten Guillaume Josephus Thomeer","doi":"10.1186/s41747-024-00496-4","DOIUrl":"10.1186/s41747-024-00496-4","url":null,"abstract":"<p><p>Prostate-specific membrane antigen (PSMA) targeted tracers show increased uptake in several malignancies, indicating a potential for peptide radioligand therapy. Intra-arterial injection of radiotracers can increase the therapeutic window. This study aimed to evaluate the feasibility of intra-arterial injection of [<sup>68</sup>Ga]Ga-PSMA-11 for intrahepatic cholangiocarcinoma and compare tracer uptake after intrahepatic arterial injection and intravenous injection. Three patients with intrahepatic cholangiocarcinoma received [<sup>68</sup>Ga]Ga-PSMA-11 through a hepatic arterial infusion pump, followed by positron emission tomography/computed tomography (PET/CT). Two-three days later, patients underwent PET/CT after intravenous [<sup>68</sup>Ga]Ga-PSMA-11 injection. All tumours showed higher uptake on the intra-arterial scan compared with the intravenous scan: the intra-arterial / intravenous standardised uptake value normalised by lean body mass ratios were 1.40, 1.46, and 1.54. Local intra-arterial PSMA injection is possible in patients with intrahepatic cholangiocarcinoma. Local injection increases tumour-to-normal tissue ratios, increasing the therapeutic window for theranostic applications. RELEVANCE STATEMENT: Intra-arterial Prostate specific membrane antigen (PSMA) injection increases the therapeutic window for potential theranostic application in intrahepatic cholangiocarcinoma. KEY POINTS: Three patients with intrahepatic cholangiocarcinoma underwent PET/CT after intra-arterial and intravenous injection of [<sup>68</sup>Ga]Ga-PSMA-11. Intra-arterial injection showed higher uptake than intravenous injection. PSMA-targeted imaging could be valuable for a subset of intrahepatic cholangiocarcinoma patients.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"90"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jasper M Morrow, Sachit Shah, Lara Cristiano, Matthew R B Evans, Carolynne M Doherty, Talal Alnaemi, Abeer Saab, Ahmed Emira, Uros Klickovic, Ahmed Hammam, Afnan Altuwaijri, Stephen Wastling, Mary M Reilly, Michael G Hanna, Tarek A Yousry, John S Thornton
{"title":"Development of an initial training and evaluation programme for manual lower limb muscle MRI segmentation.","authors":"Jasper M Morrow, Sachit Shah, Lara Cristiano, Matthew R B Evans, Carolynne M Doherty, Talal Alnaemi, Abeer Saab, Ahmed Emira, Uros Klickovic, Ahmed Hammam, Afnan Altuwaijri, Stephen Wastling, Mary M Reilly, Michael G Hanna, Tarek A Yousry, John S Thornton","doi":"10.1186/s41747-024-00475-9","DOIUrl":"10.1186/s41747-024-00475-9","url":null,"abstract":"<p><strong>Background: </strong>Magnetic resonance imaging (MRI) quantification of intramuscular fat accumulation is a responsive biomarker in neuromuscular diseases. Despite emergence of automated methods, manual muscle segmentation remains an essential foundation. We aimed to develop a training programme for new observers to demonstrate competence in lower limb muscle segmentation and establish reliability benchmarks for future human observers and machine learning segmentation packages.</p><p><strong>Methods: </strong>The learning phase of the training programme comprised a training manual, direct instruction, and eight lower limb MRI scans with reference standard large and small regions of interest (ROIs). The assessment phase used test-retest scans from two patients and two healthy controls. Interscan and interobserver reliability metrics were calculated to identify underperforming outliers and to determine competency benchmarks.</p><p><strong>Results: </strong>Three experienced observers undertook the assessment phase, whilst eight new observers completed the full training programme. Two of the new observers were identified as underperforming outliers, relating to variation in size or consistency of segmentations; six had interscan and interobserver reliability equivalent to those of experienced observers. The calculated benchmark for the Sørensen-Dice similarity coefficient between observers was greater than 0.87 and 0.92 for individual thigh and calf muscles, respectively. Interscan and interobserver reliability were significantly higher for large than small ROIs (all p < 0.001).</p><p><strong>Conclusions: </strong>We developed, implemented, and analysed the first formal training programme for manual lower limb muscle segmentation. Large ROI showed superior reliability to small ROI for fat fraction assessment.</p><p><strong>Relevance statement: </strong>Observers competent in lower limb muscle segmentation are critical to application of quantitative muscle MRI biomarkers in neuromuscular diseases. This study has established competency benchmarks for future human observers or automated segmentation methods.</p><p><strong>Key points: </strong>• Observers competent in muscle segmentation are critical for quantitative muscle MRI biomarkers. • A training programme for muscle segmentation was undertaken by eight new observers. • We established competency benchmarks for future human observers or automated segmentation methods.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"85"},"PeriodicalIF":3.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Balázs Bogner, Markus Wenning, Pia M Jungmann, Marco Reisert, Thomas Lange, Marcel Tennstedt, Lukas Klein, Thierno D Diallo, Fabian Bamberg, Hagen Schmal, Matthias Jung
{"title":"T1ρ relaxation mapping in osteochondral lesions of the talus: a non-invasive biomarker for altered biomechanical properties of hyaline cartilage?","authors":"Balázs Bogner, Markus Wenning, Pia M Jungmann, Marco Reisert, Thomas Lange, Marcel Tennstedt, Lukas Klein, Thierno D Diallo, Fabian Bamberg, Hagen Schmal, Matthias Jung","doi":"10.1186/s41747-024-00488-4","DOIUrl":"10.1186/s41747-024-00488-4","url":null,"abstract":"<p><strong>Background: </strong>To evaluate T1ρ relaxation mapping in patients with symptomatic talar osteochondral lesions (OLT) and healthy controls (HC) at rest, with axial loading and traction.</p><p><strong>Methods: </strong>Participants underwent 3-T ankle magnetic resonance imaging at rest and with 500 N loading and 120 N traction, without axial traction for a subcohort of 17/29 HC. We used a fast low-angle shot sequence with variable spin-lock intervals for monoexponential T1ρ fitting. Cartilage was manually segmented to extract T1ρ values.</p><p><strong>Results: </strong>We studied 29 OLT patients (age 31.7 ± 7.5 years, 15 females, body mass index [BMI] 25.0 ± 3.4 kg/m<sup>2</sup>) and 29 HC (age 25.2 ± 4.3 years, 17 females, BMI 22.5 ± 2.3 kg/m<sup>2</sup>. T1ρ values of OLT (50.4 ± 3.4 ms) were higher than those of intact cartilage regions of OLT patients (47.2 ± 3.4 ms; p = 0.003) and matched HC cartilage (48.1 ± 3.3 ms; p = 0.030). Axial loading and traction induced significant T1ρ changes in the intact cartilage regions of patients (loading, mean difference -1.1 ms; traction, mean difference 1.4 ms; p = 0.030 for both) and matched HC cartilage (-2.2 ms, p = 0.003; 2.3 ms, p = 0.030; respectively), but not in the OLT itself (-1.3 ms; p = 0.150; +1.9 ms; p = 0.150; respectively).</p><p><strong>Conclusion: </strong>Increased T1ρ values may serve as a biomarker of cartilage degeneration in OLT. The absence of load- and traction-induced T1ρ changes in OLT compared to intact cartilage suggests that T1ρ may reflect altered biomechanical properties of hyaline cartilage.</p><p><strong>Trial registration: </strong>DRKS, DRKS00024010. Registered 11 January 2021, https://drks.de/search/de/trial/DRKS00024010 .</p><p><strong>Relevance statement: </strong>T1ρ mapping has the potential to evaluate compositional and biomechanical properties of the talar cartilage and may improve therapeutic decision-making in patients with osteochondral lesions.</p><p><strong>Key points: </strong>T1ρ values in osteochondral lesions increased compared to intact cartilage. Significant load- and traction-induced T1ρ changes were observed in visually intact regions and in healthy controls but not in osteochondral lesions. T1ρ may serve as an imaging biomarker for biomechanical properties of cartilage.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"83"},"PeriodicalIF":3.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quirin Bellmann, Yang Peng, Ulrich Genske, Li Yan, Moritz Wagner, Paul Jahnke
{"title":"Low-contrast lesion detection in neck CT: a multireader study comparing deep learning, iterative, and filtered back projection reconstructions using realistic phantoms.","authors":"Quirin Bellmann, Yang Peng, Ulrich Genske, Li Yan, Moritz Wagner, Paul Jahnke","doi":"10.1186/s41747-024-00486-6","DOIUrl":"10.1186/s41747-024-00486-6","url":null,"abstract":"<p><strong>Background: </strong>Computed tomography (CT) reconstruction algorithms can improve image quality, especially deep learning reconstruction (DLR). We compared DLR, iterative reconstruction (IR), and filtered back projection (FBP) for lesion detection in neck CT.</p><p><strong>Methods: </strong>Nine patient-mimicking neck phantoms were examined with a 320-slice scanner at six doses: 0.5, 1, 1.6, 2.1, 3.1, and 5.2 mGy. Each of eight phantoms contained one circular lesion (diameter 1 cm; contrast -30 HU to the background) in the parapharyngeal space; one phantom had no lesions. Reconstruction was made using FBP, IR, and DLR. Thirteen readers were tasked with identifying and localizing lesions in 32 images with a lesion and 20 without lesions for each dose and reconstruction algorithm. Receiver operating characteristic (ROC) and localization ROC (LROC) analysis were performed.</p><p><strong>Results: </strong>DLR improved lesion detection with ROC area under the curve (AUC) 0.724 ± 0.023 (mean ± standard error of the mean) using DLR versus 0.696 ± 0.021 using IR (p = 0.037) and 0.671 ± 0.023 using FBP (p < 0.001). Likewise, DLR improved lesion localization, with LROC AUC 0.407 ± 0.039 versus 0.338 ± 0.041 using IR (p = 0.002) and 0.313 ± 0.044 using FBP (p < 0.001). Dose reduction to 0.5 mGy compromised lesion detection in FBP-reconstructed images compared to doses ≥ 2.1 mGy (p ≤ 0.024), while no effect was observed with DLR or IR (p ≥ 0.058).</p><p><strong>Conclusion: </strong>DLR improved the detectability of lesions in neck CT imaging. Dose reduction to 0.5 mGy maintained lesion detectability when denoising reconstruction was used.</p><p><strong>Relevance statement: </strong>Deep learning enhances lesion detection in neck CT imaging compared to iterative reconstruction and filtered back projection, offering improved diagnostic performance and potential for x-ray dose reduction.</p><p><strong>Key points: </strong>Low-contrast lesion detectability was assessed in anatomically realistic neck CT phantoms. Deep learning reconstruction (DLR) outperformed filtered back projection and iterative reconstruction. Dose has little impact on lesion detectability against anatomical background structures.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"84"},"PeriodicalIF":3.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}