Cer-ConvN3Unet: an end-to-end multi-parametric MRI-based pipeline for automated detection and segmentation of cervical cancer.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Shao-Jun Xia, Bo Zhao, Yingming Li, Xiangxing Kong, Zhi-Nan Wang, Qingmo Yang, Jia-Qi Wu, Haijiao Li, Kun Cao, Hai-Tao Zhu, Xiao-Ting Li, Xiao-Yan Zhang, Ying-Shi Sun
{"title":"Cer-ConvN3Unet: an end-to-end multi-parametric MRI-based pipeline for automated detection and segmentation of cervical cancer.","authors":"Shao-Jun Xia, Bo Zhao, Yingming Li, Xiangxing Kong, Zhi-Nan Wang, Qingmo Yang, Jia-Qi Wu, Haijiao Li, Kun Cao, Hai-Tao Zhu, Xiao-Ting Li, Xiao-Yan Zhang, Ying-Shi Sun","doi":"10.1186/s41747-025-00557-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We established and validated an innovative two-phase pipeline for automated detection and segmentation on multi-parametric cervical cancer magnetic resonance imaging (MRI) and investigated the clinical efficacy.</p><p><strong>Methods: </strong>The retrospective multicenter study included 125 cervical cancer patients enrolled in two hospitals for 14,547 two-dimensional images. All the patients underwent pelvic MRI examinations consisting of diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI). The deep learning framework involved a multiparametric detection module utilizing ConvNeXt blocks and a subsequent segmentation module utilizing 3-channel DoubleU-Nets. The pipeline was trained and tested (80:20 ratio) on 3,077 DWI, 2,990 T2WI, and 8,480 CE-T1WI slices.</p><p><strong>Results: </strong>In terms of reference standards from gynecologic radiologists, the first automated detection module achieved overall results of 93% accuracy (95% confidence interval 92-94%), 93% precision (92-94%), 93% recall (92-94%), 0.90 κ (0.89-0.91), and 0.93 F1-score (0.92-0.94). The second-stage segmentation exhibited Dice similarity coefficients and Jaccard values of 83% (81-85%) and 71% (69-74%) for DWI, 79% (75-82%), and 65% (61-69%) for T2WI, 74% (71-76%) and 59% (56-62%) for CE-T1WI.</p><p><strong>Conclusion: </strong>Independent experiments demonstrated that the pipeline could get high recognition and segmentation accuracy without human intervention, thus effectively reducing the delineation burden for radiologists and gynecologists.</p><p><strong>Relevance statement: </strong>The proposed pipeline is potentially an alternative tool in imaging reading and processing cervical cancer. Meanwhile, this can serve as the basis for subsequent work related to tumor lesions. The pipeline contributes to saving the working time of radiologists and gynecologists.</p><p><strong>Key points: </strong>An AI-assisted multiparametric MRI-based pipeline can effectively support radiologists in cervical cancer evaluation. The proposed pipeline shows high recognition and segmentation performance without manual intervention. The proposed pipeline may become a promising auxiliary tool in gynecological imaging.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"20"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-025-00557-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We established and validated an innovative two-phase pipeline for automated detection and segmentation on multi-parametric cervical cancer magnetic resonance imaging (MRI) and investigated the clinical efficacy.

Methods: The retrospective multicenter study included 125 cervical cancer patients enrolled in two hospitals for 14,547 two-dimensional images. All the patients underwent pelvic MRI examinations consisting of diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI). The deep learning framework involved a multiparametric detection module utilizing ConvNeXt blocks and a subsequent segmentation module utilizing 3-channel DoubleU-Nets. The pipeline was trained and tested (80:20 ratio) on 3,077 DWI, 2,990 T2WI, and 8,480 CE-T1WI slices.

Results: In terms of reference standards from gynecologic radiologists, the first automated detection module achieved overall results of 93% accuracy (95% confidence interval 92-94%), 93% precision (92-94%), 93% recall (92-94%), 0.90 κ (0.89-0.91), and 0.93 F1-score (0.92-0.94). The second-stage segmentation exhibited Dice similarity coefficients and Jaccard values of 83% (81-85%) and 71% (69-74%) for DWI, 79% (75-82%), and 65% (61-69%) for T2WI, 74% (71-76%) and 59% (56-62%) for CE-T1WI.

Conclusion: Independent experiments demonstrated that the pipeline could get high recognition and segmentation accuracy without human intervention, thus effectively reducing the delineation burden for radiologists and gynecologists.

Relevance statement: The proposed pipeline is potentially an alternative tool in imaging reading and processing cervical cancer. Meanwhile, this can serve as the basis for subsequent work related to tumor lesions. The pipeline contributes to saving the working time of radiologists and gynecologists.

Key points: An AI-assisted multiparametric MRI-based pipeline can effectively support radiologists in cervical cancer evaluation. The proposed pipeline shows high recognition and segmentation performance without manual intervention. The proposed pipeline may become a promising auxiliary tool in gynecological imaging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信